INEQUALITIES 17A
Summarizing, t^2 − 2 t− 8 <0 is satisfied when
− 2 <t< 4
Problem 17. Solve the inequality:
x^2 + 6 x+ 3 < 0x^2 + 6 x+3 does not factorize; completing the
square gives:
x^2 + 6 x+ 3 ≡(x+ 3 )^2 + 3 − 32≡(x+ 3 )^2 − 6The inequality thus becomes:(x+ 3 )^2 − 6 <0or
(x+ 3 )^2 < 6
From equation (2),−
√
6 <(x+3)<√
6from which, (−
√
6 −3)<x<(√
6 −3)Hence,x^2 + 6 x+ 3 <0 is satisfied when
−5.45<x<−0.55correct to 2 decimal places.
Problem 18. Solve the inequality:
y^2 − 8 y− 10 ≥ 0y^2 − 8 y−10 does not factorize; completing the
square gives:
y^2 − 8 y− 10 ≡(y−4)^2 − 10 − 42
≡(y−4)^2 − 26The inequality thus becomes:(y− 4 )^2 − 26 ≥0or
(y− 4 )^2 ≥ 26
From equation (1), (y−4)≥√
26 or (y−4)≤−√
26from which, y≥ 4 +√
26 ory≤ 4 −√
26Hence,y^2 − 8 y− 10 ≥0 is satisfied wheny≥9.10
ory≤−1.10correct to 2 decimal places.Now try the following exercise.Exercise 12 Further problems on quadratic
inequalitiesSolve the following inequalities:1.x^2 −x− 6 >0[x>3orx<−2]2.t^2 + 2 t− 8 ≤0[− 4 ≤t≤2]- 2x^2 + 3 x− 2 < 0
[
− 2 <x<1
2]4.y^2 −y− 20 ≥0[y≥5ory≤−4]5.z^2 + 4 z+ 4 ≤4[− 4 ≤z≤0]6.x^2 + 6 x+ 6 ≤ 0
[(−√
3 −3)≤x≤(√
3 −3)]7.t^2 − 4 t− 7 ≥ 0
[t≥(√
11 +2) ort≤(2−√
11)]8.k^2 +k− 3 ≥ 0
[k≥(√
13
4−1
2)ork≤(−√
13
4−1
2)]