INEQUALITIES 17
A
Summarizing, t^2 − 2 t− 8 <0 is satisfied when
− 2 <t< 4
Problem 17. Solve the inequality:
x^2 + 6 x+ 3 < 0
x^2 + 6 x+3 does not factorize; completing the
square gives:
x^2 + 6 x+ 3 ≡(x+ 3 )^2 + 3 − 32
≡(x+ 3 )^2 − 6
The inequality thus becomes:(x+ 3 )^2 − 6 <0or
(x+ 3 )^2 < 6
From equation (2),−
√
6 <(x+3)<
√
6
from which, (−
√
6 −3)<x<(
√
6 −3)
Hence,x^2 + 6 x+ 3 <0 is satisfied when
−5.45<x<−0.55correct to 2 decimal places.
Problem 18. Solve the inequality:
y^2 − 8 y− 10 ≥ 0
y^2 − 8 y−10 does not factorize; completing the
square gives:
y^2 − 8 y− 10 ≡(y−4)^2 − 10 − 42
≡(y−4)^2 − 26
The inequality thus becomes:(y− 4 )^2 − 26 ≥0or
(y− 4 )^2 ≥ 26
From equation (1), (y−4)≥
√
26 or (y−4)≤−
√
26
from which, y≥ 4 +
√
26 ory≤ 4 −
√
26
Hence,y^2 − 8 y− 10 ≥0 is satisfied wheny≥9.10
ory≤−1.10correct to 2 decimal places.
Now try the following exercise.
Exercise 12 Further problems on quadratic
inequalities
Solve the following inequalities:
1.x^2 −x− 6 >0[x>3orx<−2]
2.t^2 + 2 t− 8 ≤0[− 4 ≤t≤2]
- 2x^2 + 3 x− 2 < 0
[
− 2 <x<
1
2
]
4.y^2 −y− 20 ≥0[y≥5ory≤−4]
5.z^2 + 4 z+ 4 ≤4[− 4 ≤z≤0]
6.x^2 + 6 x+ 6 ≤ 0
[(−
√
3 −3)≤x≤(
√
3 −3)]
7.t^2 − 4 t− 7 ≥ 0
[t≥(
√
11 +2) ort≤(2−
√
11)]
8.k^2 +k− 3 ≥ 0
[
k≥
(√
13
4
−
1
2
)
ork≤
(
−
√
13
4
−
1
2
)]