342 DIFFERENTIAL CALCULUS
- (a) sech−^1 (x−1) (b) tanh−^1 (tanhx)
[
(a)
− 1
(x−1)√
[x(2−x)](b) 1]- (a) cosh−^1
(
t
t− 1)
(b) coth−^1 (cosx)[
(a)− 1
(t−1)√
(2t−1)(b)−cosecx]- (a)θsinh−^1 θ (b)
√
xcosh−^1 x
⎡⎢
⎢
⎢
⎣(a)θ
√
(θ^2 +1)+sinh−^1 θ(b)√
x
√
(x^2 −1)+cosh−^1 x
2√
x⎤⎥
⎥
⎥
⎦- (a)
2 sec h−^1√
t
t^2(b)tan h−^1 x
(1−x^2 )
⎡ ⎢ ⎢ ⎢ ⎢ ⎣
(a)− 1
t^3{
1
√
(1−t)+4 sech−^1√
t}(b)1 + 2 xtanh−^1 x
(1−x^2 )^2⎤ ⎥ ⎥ ⎥ ⎥ ⎦- Show that
d
dx[xcosh−^1 (coshx)]= 2 xIn Problems 13 to 15, determine the given
integrals- (a)
∫
1
√
(x^2 +9)dx(b)∫
3
√
(4x^2 +25)dx[
(a) sinh−^1x
3+c(b)3
2sinh−^12 x
5+c]- (a)
∫
1
√
(x^2 −16)dx(b)∫
1
√
(t^2 −5)dt[
(a) cosh−^1x
4+c(b) cosh−^1t
√
5+c]- (a)
∫
dθ
√
(36+θ^2 )(b)∫
3
(16− 2 x^2 )dx⎡⎢
⎢
⎣(a)1
6tan−^1θ
6+c(b)32√
8tanh−^1x
√
8+c⎤⎥
⎥
⎦