TOTAL DIFFERENTIAL, RATES OF CHANGE AND SMALL CHANGES 353G
Using equation (3), the approximate error ink,
δk≈∂k
∂pδp+∂k
∂VδVLetp,Vandkrefer to the initial values.
Since k=pV^1.^4 then
∂k
∂p=V^1.^4and
∂k
∂V= 1. 4 pV^0.^4Since the pressure is increased by 4%, the change in
pressureδp=
4
100×p= 0. 04 p.Since the volume is decreased by 1.5%, the change
in volumeδV=
− 1. 5
100×V=− 0. 015 V.Hence the approximate error ink,
δk≈(V)^1.^4 (0. 04 p)+(1. 4 pV^0.^4 )(− 0. 015 V)
≈pV^1.^4 [0. 04 − 1 .4(0.015)]≈pV^1.^4 [0.019]≈1. 9
100pV^1.^4 ≈1. 9
100ki.e.the approximate error inkis a 1.9% increase.
Problem 9. Modulus of rigidityG=(R^4 θ)/L,
whereRis the radius,θthe angle of twist andL
the length. Determine the approximate percent-
age error inGwhenRis increased by 2%,θis
reduced by 5% andLis increased by 4%.Using δG≈∂G
∂RδR+∂G
∂θδθ+∂G
∂LδLSince G=
R^4 θ
L,∂G
∂R=4 R^3 θ
L,∂G
∂θ=R^4
Land∂G
∂L=−R^4 θ
L^2SinceRis increased by 2%,δR=
2
100R= 0. 02 RSimilarly,δθ=− 0. 05 θandδL= 0. 04 L
HenceδG≈
(
4 R^3 θ
L)
(0. 02 R)+(
R^4
L)
(− 0. 05 θ)+(
−R^4 θ
L^2)
(0. 04 L)≈R^4 θ
L[0. 08 − 0. 05 − 0 .04]≈− 0. 01R^4 θ
L,i.e.δG≈−1
100GHence the approximate percentage error inGis
a 1% decrease.Problem 10. The second moment of area of
a rectangle is given byI=(bl^3 )/3. Ifbandl
are measured as 40 mm and 90 mm respectively
and the measurement errors are−5mminband
+8mm inl, find the approximate error in the
calculated value ofI.Using equation (3), the approximate error inI,δI≈∂I
∂bδb+∂I
∂lδl∂I
∂b=l^3
3and∂I
∂l=3 bl^2
3=bl^2δb=−5 mm andδl=+8mmHenceδI≈(
l^3
3)
(−5)+(bl^2 )(+8)Sinceb=40 mm andl=90 mm thenδI≈(
903
3)
(−5)+40(90)^2 (8)≈− 1215000 + 2592000
≈1377000 mm^4 ≈ 137 .7cm^4Hence the approximate error in the calculated
value ofIis a 137.7 cm^4 increase.Problem 11. The time of oscillationtof a pen-dulum is given by t= 2 π√
l
g. Determine the
approximate percentage error intwhenlhas
an error of 0.2% too large andg0.1% too small.Using equation (3), the approximate change int,δt≈∂t
∂lδl+∂t
∂gδgSince t= 2 π√
l
g,∂t
∂l=π
√
lg