360 DIFFERENTIAL CALCULUSWheny=0 in equation (1), 4x^3 − 16 x= 0
i.e. 4 x(x^2 −4)= 0
from which,x=0orx=± 2
The co-ordinates of the stationary points are
(0, 0), (2, 0) and (−2, 0).(iv)∂^2 z
∂x^2= 12 x^2 + 4 y^2 −16,∂^2 z
∂y^2= 4 x^2 + 12 y^2 +16 and∂^2 z
∂x∂y= 8 xy(v) For the point (0, 0),∂^2 z
∂x^2=−16,∂^2 z
∂y^2=16 and∂^2 z
∂x∂y= 0For the point (2, 0),∂^2 z
∂x^2=32,∂^2 z
∂y^2=32 and∂^2 z
∂x∂y= 0For the point (−2, 0),∂^2 z
∂x^2=32,∂^2 z
∂y^2=32 and∂^2 z
∂x∂y= 0(vi)(
∂^2 z
∂x∂y) 2
=0 for each stationary point(vii)(0, 0) =(0)^2 −(−16)(16)= 256(2, 0) =(0)^2 −(32)(32)=− 1024(−2, 0)=(0)^2 −(32)(32)=− 1024(viii) Since(0, 0)>0,the point (0, 0) is a saddle
point.
Since(0, 0)<0 and(
∂^2 z
∂x^2)(2, 0)>0,the point(2, 0) is a minimum point.Since (−2, 0)<0 and(
∂^2 z
∂x^2)(−2, 0)>0, thepoint (−2, 0) is a minimum point.Looking down towards thex-yplane from above,
an approximate contour map can be constructed
to represent the value ofz. Such a map is shown
in Fig. 36.9. To produce a contour map requires a
large number ofx-yco-ordinates to be chosen and
the values ofzat each co-ordinate calculated. Hereare a few examples of points used to construct the
contour map.Whenz= 0 ,0=(x^2 +y^2 )^2 −8(x^2 −y)^2
In addition, when, say,y=0 (i.e. on thex-axis)0 =x^4 − 8 x^2 ,i.e.x^2 (x^2 −8)= 0from which, x=0orx=±√
8Hence the contourz=0 crosses thex-axis at 0
and±√
8, i.e. at co-ordinates (0, 0), (2.83, 0) and
(−2.83, 0) shown as points,S,aandbrespectively.
Whenz=0 andx= 2 then0 =(4+y^2 )^2 −8(4−y^2 )i.e. 0 = 16 + 8 y^2 +y^4 − 32 + 8 y^2i.e. 0 =y^4 + 16 y^2 − 16Let y^2 =p, thenp^2 + 16 p− 16 =0 andp=− 16 ±√
162 −4(1)(−16)
2=− 16 ± 17. 89
2
= 0 .945 or− 16. 945Hence y=√
p=√
(0.945) or√
(− 16 .945)
=± 0 .97 or complex roots.Hence the z=0 contour passes through the
co-ordinates (2, 0.97) and (2,−0.97) shown as a
canddin Fig. 36.9.Similarly, for thez= 9 contour, wheny=0,9 =(x^2 + 02 )^2 −8(x^2 − 02 )i.e. 9 =x^4 − 8 x^2
i.e. x^4 − 8 x^2 − 9 = 0
Hence (x^2 −9)(x^2 +1)=0.
from which,x=±3 or complex roots.
Thus thez=9 contour passes through (3, 0) and
(−3, 0), shown aseandfin Fig. 36.9.Ifz=9 andx=0, 9 =y^4 + 8 y^2i.e. y^4 + 8 y^2 − 9 = 0i.e. (y^2 +9)(y^2 −1)= 0from which,y=±1 or complex roots.