Higher Engineering Mathematics

(Greg DeLong) #1
PARTIAL FRACTIONS 19

A

whereAandBare constants to be determined,


i.e.

11 − 3 x
(x−1)(x+3)


A(x+3)+B(x−1)
(x−1)(x+3)

,

by algebraic addition.
Since the denominators are the same on each side
of the identity then the numerators are equal to each
other.


Thus, 11− 3 x≡A(x+3)+B(x−1)


To determine constantsAandB, values ofxare
chosen to make the term inAorBequal to zero.


Whenx=1, then


11 −3(1)≡A(1+3)+B(0)

i.e. 8 = 4 A


i.e. A= 2


Whenx=−3, then


11 −3(−3)≡A(0)+B(− 3 −1)

i.e. 20 =− 4 B


i.e. B=− 5


Thus


11 − 3 x
x^2 + 2 x− 3


2
(x−1)

+

− 5
(x+3)


2
(x− 1 )


5
(x+ 3 )

[


Check:

2
(x−1)


5
(x+3)

=

2(x+3)−5(x−1)
(x−1)(x+3)

=

11 − 3 x
x^2 + 2 x− 3

]

Problem 2. Convert

2 x^2 − 9 x− 35
(x+1)(x−2)(x+3)
into the sum of three partial fractions.

Let


2 x^2 − 9 x− 35
(x+1)(x−2)(x+3)


A
(x+1)

+

B
(x−2)

+

C
(x+3)


(
A(x−2)(x+3)+B(x+1)(x+3)
+C(x+1)(x−2)

)

(x+1)(x−2)(x+3)

by algebraic addition.


Equating the numerators gives:

2 x^2 − 9 x− 35 ≡A(x−2)(x+3)

+B(x+1)(x+3)+C(x+1)(x−2)

Letx=−1. Then

2(−1)^2 −9(−1)− 35 ≡A(−3)(2)
+B(0)(2)+C(0)(−3)

i.e. − 24 =− 6 A

i.e. A=

− 24
− 6

= 4

Letx=2. Then

2(2)^2 −9(2)− 35 ≡A(0)(5)+B(3)(5)+C(3)(0)
i.e. − 45 = 15 B

i.e. B=

− 45
15

=− 3
Letx=−3. Then

2(−3)^2 −9(−3)− 35 ≡A(−5)(0)+B(−2)(0)
+C(−2)(−5)
i.e. 10 = 10 C
i.e. C= 1

Thus

2 x^2 − 9 x− 35
(x+1)(x−2)(x+3)


4
(x+ 1 )


3
(x− 2 )

+

1
(x+ 3 )

Problem 3. Resolve

x^2 + 1
x^2 − 3 x+ 2

into partial
fractions.

The denominator is of the same degree as the
numerator. Thus dividing out gives:

1
x^2 − 3 x+ 2

)
x^2 + 1
x^2 − 3 x+ 2
—————
3 x− 1
———

For more on polynomial division, see Section 1.4,
page 6.
Free download pdf