368 INTEGRAL CALCULUSTable 37.1 Standard integrals(i)∫
axndx=axn+^1
n+ 1+c(except whenn=−1)(ii)∫
cosaxdx=1
asinax+c(iii)∫
sinaxdx=−1
acosax+c(iv)∫
sec^2 axdx=1
atanax+c(v)∫
cosec^2 axdx=−1
acotax+c(vi)∫
cosecaxcotaxdx=−1
acosecax+c(vii)∫
secaxtanaxdx=1
asecax+c(viii)∫
eaxdx=1
aeax+c(ix)∫
1
xdx=lnx+cProblem 1. Determine (a)∫
5 x^2 dx(b)∫
2 t^3 dt.The standard integral,
∫
axndx=axn+^1
n+ 1+c(a) Whena=5 andn=2 then
∫
5 x^2 dx=5 x^2 +^1
2 + 1+c=5 x^3
3+c(b) Whena=2 andn=3 then
∫
2 t^3 dt=2 t^3 +^1
3 + 1+c=2 t^4
4+c=1
2t^4 +cEach of these results may be checked by differenti-
ating them.Problem 2. Determine
∫(
4 +3
7x− 6 x^2)
dx.∫
(4+^37 x− 6 x^2 )dxmay be written as
∫
4dx +∫ 3
7 xdx−∫
6 x^2 dx, i.e. each term isintegrated separately. (This splitting up of terms only
applies, however, for addition and subtraction.)Hence∫(
4 +3
7x− 6 x^2)
dx= 4 x+(
3
7)
x^1 +^1
1 + 1−(6)x^2 +^1
2 + 1+c= 4 x+(
3
7)
x^2
2−(6)x^3
3+c= 4 x+3
14x^2 − 2 x^3 +cNote that when an integral contains more than one
term there is no need to have an arbitrary constant
for each; just a single constant at the end is sufficient.Problem 3. Determine(a)∫
2 x^3 − 3 x
4 xdx (b)∫
(1−t)^2 dt(a) Rearranging into standard integral form gives:
∫
2 x^3 − 3 x
4 xdx=∫
2 x^3
4 x−3 x
4 xdx=∫
x^2
2−3
4dx=(
1
2)
x^2 +^1
2 + 1−3
4x+c=(
1
2)
x^3
3−3
4x+c=1
6x^3 −3
4x+c(b) Rearranging∫
(1−t)^2 dtgives:∫
(1− 2 t+t^2 )dt=t−2 t^1 +^1
1 + 1+t^2 +^1
2 + 1+c=t−2 t^2
2+t^3
3+c=t−t^2 +1
3t^3 +cThis problem shows that functions often have to be
rearranged into the standard form of∫
axndxbefore
it is possible to integrate them.