Higher Engineering Mathematics

(Greg DeLong) #1
376 INTEGRAL CALCULUS

38.3 Mean and r.m.s. values


With reference to Fig. 38.5,

mean value,y=

1
b−a

∫b

a

ydx

and r.m.s. value=





{
1
b−a

∫b

a

y^2 dx

}

Figure 38.5

Problem 4. A sinusoidal voltagev=100 sinωt
volts. Use integration to determine over half a
cycle (a) the mean value, and (b) the r.m.s. value.

(a) Half a cycle means the limits are 0 toπradians.


Mean value,y=

1
π− 0

∫π

0

vd(ωt)

=

1
π

∫π

0

100 sinωtd(ωt)

=

100
π

[−cosωt]π 0

=

100
π

[(−cosπ)−(−cos 0)]

=

100
π

[(+1)−(−1)]=

200
π
=63.66 volts
[Note that for a sine wave,

mean value=

2
π

×maximum value

In this case, mean value=

2
π

× 100 = 63 .66 V]

(b) r.m.s. value

=

√{
1
π− 0

∫π

0

v^2 d(ωt)

}

=

√{
1
π

∫π

0

(100 sinωt)^2 d(ωt)

}

=

√{
10000
π

∫π

0

sin^2 ωtd(ωt)

}
,

which is not a ‘standard’ integral.

It is shown in Chapter 18 that cos 2A= 1 −2 sin^2 A
and this formula is used whenever sin^2 Aneeds to
be integrated.

Rearranging cos 2A= 1 −2 sin^2 Agives

sin^2 A=

1
2

(1−cos 2A)

Hence

√{
10000
π

∫π

0

sin^2 ωtd(ωt)

}

=

√{
10000
π

∫π

0

1
2

(1−cos 2ωt)d(ωt)

}

=

√{
10000
π

1
2

[
ωt−

sin 2ωt
2


0

}

=

√ √ √ √ √ √ √

⎪⎪

⎪⎪

10000
π

1
2

[(
π−

sin 2π
2

)


(
0 −

sin 0
2

)]


⎪⎪

⎪⎪

=

√{
10000
π

1
2

[π]

}

=

√{
10000
2

}
=

100

2

=70.71 volts

[Note that for a sine wave,

r.m.s. value=

1

2

×maximum value.

In this case,

r.m.s. value=

1

2

× 100 = 70 .71 V]
Free download pdf