376 INTEGRAL CALCULUS38.3 Mean and r.m.s. values
With reference to Fig. 38.5,mean value,y=1
b−a∫baydxand r.m.s. value=√
√
√
√{
1
b−a∫bay^2 dx}Figure 38.5Problem 4. A sinusoidal voltagev=100 sinωt
volts. Use integration to determine over half a
cycle (a) the mean value, and (b) the r.m.s. value.(a) Half a cycle means the limits are 0 toπradians.
Mean value,y=1
π− 0∫π0vd(ωt)=1
π∫π0100 sinωtd(ωt)=100
π[−cosωt]π 0=100
π[(−cosπ)−(−cos 0)]=100
π[(+1)−(−1)]=200
π
=63.66 volts
[Note that for a sine wave,mean value=2
π×maximum valueIn this case, mean value=2
π× 100 = 63 .66 V](b) r.m.s. value=√{
1
π− 0∫π0v^2 d(ωt)}=√{
1
π∫π0(100 sinωt)^2 d(ωt)}=√{
10000
π∫π0sin^2 ωtd(ωt)}
,which is not a ‘standard’ integral.It is shown in Chapter 18 that cos 2A= 1 −2 sin^2 A
and this formula is used whenever sin^2 Aneeds to
be integrated.Rearranging cos 2A= 1 −2 sin^2 Agivessin^2 A=1
2(1−cos 2A)Hence√{
10000
π∫π0sin^2 ωtd(ωt)}=√{
10000
π∫π01
2(1−cos 2ωt)d(ωt)}=√{
10000
π1
2[
ωt−sin 2ωt
2]π0}=√ √ √ √ √ √ √
⎧
⎪⎪
⎨⎪⎪
⎩10000
π1
2[(
π−sin 2π
2)−(
0 −sin 0
2)]⎫
⎪⎪
⎬⎪⎪
⎭=√{
10000
π1
2[π]}=√{
10000
2}
=100
√
2=70.71 volts[Note that for a sine wave,r.m.s. value=1
√
2×maximum value.In this case,r.m.s. value=1
√
2× 100 = 70 .71 V]