376 INTEGRAL CALCULUS
38.3 Mean and r.m.s. values
With reference to Fig. 38.5,
mean value,y=
1
b−a
∫b
a
ydx
and r.m.s. value=
√
√
√
√
{
1
b−a
∫b
a
y^2 dx
}
Figure 38.5
Problem 4. A sinusoidal voltagev=100 sinωt
volts. Use integration to determine over half a
cycle (a) the mean value, and (b) the r.m.s. value.
(a) Half a cycle means the limits are 0 toπradians.
Mean value,y=
1
π− 0
∫π
0
vd(ωt)
=
1
π
∫π
0
100 sinωtd(ωt)
=
100
π
[−cosωt]π 0
=
100
π
[(−cosπ)−(−cos 0)]
=
100
π
[(+1)−(−1)]=
200
π
=63.66 volts
[Note that for a sine wave,
mean value=
2
π
×maximum value
In this case, mean value=
2
π
× 100 = 63 .66 V]
(b) r.m.s. value
=
√{
1
π− 0
∫π
0
v^2 d(ωt)
}
=
√{
1
π
∫π
0
(100 sinωt)^2 d(ωt)
}
=
√{
10000
π
∫π
0
sin^2 ωtd(ωt)
}
,
which is not a ‘standard’ integral.
It is shown in Chapter 18 that cos 2A= 1 −2 sin^2 A
and this formula is used whenever sin^2 Aneeds to
be integrated.
Rearranging cos 2A= 1 −2 sin^2 Agives
sin^2 A=
1
2
(1−cos 2A)
Hence
√{
10000
π
∫π
0
sin^2 ωtd(ωt)
}
=
√{
10000
π
∫π
0
1
2
(1−cos 2ωt)d(ωt)
}
=
√{
10000
π
1
2
[
ωt−
sin 2ωt
2
]π
0
}
=
√ √ √ √ √ √ √
⎧
⎪⎪
⎨
⎪⎪
⎩
10000
π
1
2
[(
π−
sin 2π
2
)
−
(
0 −
sin 0
2
)]
⎫
⎪⎪
⎬
⎪⎪
⎭
=
√{
10000
π
1
2
[π]
}
=
√{
10000
2
}
=
100
√
2
=70.71 volts
[Note that for a sine wave,
r.m.s. value=
1
√
2
×maximum value.
In this case,
r.m.s. value=
1
√
2
× 100 = 70 .71 V]