Higher Engineering Mathematics

(Greg DeLong) #1

386 INTEGRAL CALCULUS


IPP=Ak^2 PP, from which,

kPP=


IPP
area

=

√(
645000
600

)
=32.79 mm

Problem 13. Determine the second moment of
area and radius of gyration about axisQQof the
triangleBCDshown in Fig. 38.20.

B

G G

CD

QQ

12.0 cm

8.0 cm 6.0 cm

Figure 38.20

Using the parallel axis theorem:IQQ=IGG+Ad^2 ,
whereIGGis the second moment of area about the
centroid of the triangle,


i.e.


bh^3
36

=

(8.0)(12.0)^3
36

=384 cm^4 ,

Ais the area of the triangle,


=^12 bh=^12 (8.0)(12.0)=48 cm^2

anddis the distance between axesGGandQQ,


= 6. 0 +^13 (12.0)=10 cm.

Hence the second moment of area about axisQQ,


IQQ= 384 +(48)(10)^2 =5184 cm^4.

Radius of gyration,


kQQ=


IQQ
area

=

√(
5184
48

)
=10.4 cm

Problem 14. Determine the second moment of
area and radius of gyration of the circle shown
in Fig. 38.21 about axisYY.

YY

3.0 cm

GG

r = 2.0 cm

Figure 38.21

In Fig. 38.21,IGG=

πr^4
4

=

π
4

(2.0)^4 = 4 πcm^4.

Using the parallel axis theorem,IYY=IGG+Ad^2 ,
whered= 3. 0 + 2. 0 = 5 .0 cm.
Hence IYY = 4 π+[π(2.0)^2 ](5.0)^2
= 4 π+ 100 π= 104 π=327 cm^4.
Radius of gyration,

kYY=


IYY
area

=

√(
104 π
π(2.0)^2

)
=


26 =5.10 cm

Problem 15. Determine the second moment of
area and radius of gyration for the semicircle
shown in Fig. 38.22 about axisXX.

G G

B B

XX

15.0 mm

10.0 mm

Figure 38.22
Free download pdf