386 INTEGRAL CALCULUS
IPP=Ak^2 PP, from which,kPP=√
IPP
area=√(
645000
600)
=32.79 mmProblem 13. Determine the second moment of
area and radius of gyration about axisQQof the
triangleBCDshown in Fig. 38.20.BG GCDQQ12.0 cm8.0 cm 6.0 cmFigure 38.20Using the parallel axis theorem:IQQ=IGG+Ad^2 ,
whereIGGis the second moment of area about the
centroid of the triangle,
i.e.
bh^3
36=(8.0)(12.0)^3
36=384 cm^4 ,Ais the area of the triangle,
=^12 bh=^12 (8.0)(12.0)=48 cm^2anddis the distance between axesGGandQQ,
= 6. 0 +^13 (12.0)=10 cm.Hence the second moment of area about axisQQ,
IQQ= 384 +(48)(10)^2 =5184 cm^4.Radius of gyration,
kQQ=√
IQQ
area=√(
5184
48)
=10.4 cmProblem 14. Determine the second moment of
area and radius of gyration of the circle shown
in Fig. 38.21 about axisYY.YY3.0 cmGGr = 2.0 cmFigure 38.21In Fig. 38.21,IGG=πr^4
4=π
4(2.0)^4 = 4 πcm^4.Using the parallel axis theorem,IYY=IGG+Ad^2 ,
whered= 3. 0 + 2. 0 = 5 .0 cm.
Hence IYY = 4 π+[π(2.0)^2 ](5.0)^2
= 4 π+ 100 π= 104 π=327 cm^4.
Radius of gyration,kYY=√
IYY
area=√(
104 π
π(2.0)^2)
=√
26 =5.10 cmProblem 15. Determine the second moment of
area and radius of gyration for the semicircle
shown in Fig. 38.22 about axisXX.G GB BXX15.0 mm10.0 mmFigure 38.22