388 INTEGRAL CALCULUSProblem 18. Determine correct to 3 significant
figures, the second moment of area about axis
XXfor the composite area shown in Fig. 38.25.X 4.0 cm X
1.0 cm 1.0 cm
8.0 cm6.0 cmT T2.0 cm 2.0 cmCTFigure 38.25For the semicircle,IXX=πr^4
8=π(4.0)^4
8= 100 .5cm^4For the rectangle,IXX=bl^3
3=(6.0)(8.0)^3
3=1024 cm^4For the triangle, about axisTTthrough centroidCT,ITT=bh^3
36=(10)(6.0)^3
36=60 cm^4By the parallel axis theorem, the second moment of
area of the triangle about axisXX
= 60 +[ 1
2 (10)(6.0)][
8. 0 +^13 (6.0)] 2
=3060 cm^4.Total second moment of area aboutXX
= 100. 5 + 1024 + 3060
= 4184. 5
=4180 cm^4 , correct to 3 significant figuresProblem 19. Determine the second moment of
area and the radius of gyration about axisXXfor
theI-section shown in Fig. 38.26.Figure 38.26TheI-section is divided into three rectangles,D,E
andFand their centroids denoted byCD,CEandCF
respectively.For rectangle D:
The second moment of area aboutCD (an axis
throughCDparallel toXX)=bl^3
12=(8.0)(3.0)^3
12=18 cm^4Using the parallel axis theorem:IXX= 18 +Ad^2whereA=(8.0)(3.0)=24 cm^2 andd= 12 .5cmHenceIXX= 18 +24(12.5)^2 =3768 cm^4.For rectangle E:
The second moment of area about CE (an axis
throughCEparallel toXX)=bl^3
12=(3.0)(7.0)^3
12= 85 .75 cm^4Using the parallel axis theorem:IXX= 85. 75 +(7.0)(3.0)(7.5)^2 =1267 cm^4.