INTEGRATION USING PARTIAL FRACTIONS 409
H
By dividing out and resolving into partial fractions
it was shown in Problem 4, page 20:
x^3 − 2 x^2 − 4 x− 4
x^2 +x− 2
≡x− 3 +
4
(x+2)
−
3
(x−1)
Hence
∫ 3
2
x^3 − 2 x^2 − 4 x− 4
x^2 +x− 2
dx
≡
∫ 3
2
{
x− 3 +
4
(x+2)
−
3
(x−1)
}
dx
=
[
x^2
2
− 3 x+4ln(x+2)−3ln(x−1)
] 3
2
=
(
9
2
− 9 +4ln5−3ln2
)
−(2− 6 +4ln4−3ln1)
=− 1. 687 , correct to 4 significant figures
Now try the following exercise.
Exercise 163 Further problems on integra-
tion using partial fractions with linear factors
In Problems 1 to 5, integrate with respect tox
1.
∫
12
(x^2 −9)
dx
⎡
⎢
⎣
2ln(x−3)−2ln(x+3)+c
or ln
{
x− 3
x+ 3
} 2
+c
⎤
⎥
⎦
2.
∫
4(x−4)
(x^2 − 2 x−3)
dx
⎡
⎢
⎣
5ln(x+1)−ln (x−3)+c
or ln
{
(x+1)^5
(x−3)
}
+c
⎤
⎥
⎦
3.
∫
3(2x^2 − 8 x−1)
(x+4)(x+1)(2x−1)
dx
⎡
⎢
⎢
⎢
⎣
7ln(x+4)−3ln(x+1)
−ln (2x−1)+c or
ln
{
(x+4)^7
(x+1)^3 (2x−1)
}
+c
⎤
⎥
⎥
⎥
⎦
4.
∫
x^2 + 9 x+ 8
x^2 +x− 6
dx
[
x+2ln(x+3)+6ln(x−2)+c
orx+ln{(x+3)^2 (x−2)^6 }+c
]
5.
∫
3 x^3 − 2 x^2 − 16 x+ 20
(x−2)(x+2)
dx
⎡
⎣
3 x^2
2
− 2 x+ln (x−2)
−5ln(x+2)+c
⎤
⎦
In Problems 6 and 7, evaluate the definite inte-
grals correct to 4 significant figures.
6.
∫ 4
3
x^2 − 3 x+ 6
x(x−2)(x−1)
dx [0.6275]
7.
∫ 6
4
x^2 −x− 14
x^2 − 2 x− 3
dx [0.8122]
- Determine the value of k, given that:
∫ 1
0
(x−k)
(3x+1)(x+1)
dx= 0
[
1
3
]
- The velocity constantkof a given chemical
reaction is given by:
kt=
∫ (
1
(3− 0. 4 x)(2− 0. 6 x)
)
dx
wherex=0 when t = 0. Show that:
kt=ln
{
2(3− 0. 4 x)
3(2− 0. 6 x)
}
41.3 Worked problems on integration
using partial fractions with
repeated linear factors
Problem 5. Determine
∫
2 x+ 3
(x−2)^2
dx.
It was shown in Problem 5, page 21:
2 x+ 3
(x−2)^2
≡
2
(x−2)
+
7
(x−2)^2