Higher Engineering Mathematics

(Greg DeLong) #1
INTEGRATION USING PARTIAL FRACTIONS 409

H

By dividing out and resolving into partial fractions
it was shown in Problem 4, page 20:


x^3 − 2 x^2 − 4 x− 4
x^2 +x− 2

≡x− 3 +

4
(x+2)


3
(x−1)

Hence


∫ 3

2

x^3 − 2 x^2 − 4 x− 4
x^2 +x− 2

dx


∫ 3

2

{
x− 3 +

4
(x+2)


3
(x−1)

}
dx

=

[
x^2
2

− 3 x+4ln(x+2)−3ln(x−1)

] 3

2

=

(
9
2

− 9 +4ln5−3ln2

)

−(2− 6 +4ln4−3ln1)

=− 1. 687 , correct to 4 significant figures

Now try the following exercise.


Exercise 163 Further problems on integra-
tion using partial fractions with linear factors

In Problems 1 to 5, integrate with respect tox

1.


12
(x^2 −9)

dx




2ln(x−3)−2ln(x+3)+c

or ln

{
x− 3
x+ 3

} 2
+c




2.


4(x−4)
(x^2 − 2 x−3)

dx




5ln(x+1)−ln (x−3)+c

or ln

{
(x+1)^5
(x−3)

}

+c




3.


3(2x^2 − 8 x−1)
(x+4)(x+1)(2x−1)

dx






7ln(x+4)−3ln(x+1)
−ln (2x−1)+c or

ln

{
(x+4)^7
(x+1)^3 (2x−1)

}
+c






4.


x^2 + 9 x+ 8
x^2 +x− 6

dx

[
x+2ln(x+3)+6ln(x−2)+c
orx+ln{(x+3)^2 (x−2)^6 }+c

]

5.


3 x^3 − 2 x^2 − 16 x+ 20
(x−2)(x+2)

dx



3 x^2
2

− 2 x+ln (x−2)

−5ln(x+2)+c



In Problems 6 and 7, evaluate the definite inte-
grals correct to 4 significant figures.

6.

∫ 4

3

x^2 − 3 x+ 6
x(x−2)(x−1)

dx [0.6275]

7.

∫ 6

4

x^2 −x− 14
x^2 − 2 x− 3

dx [0.8122]


  1. Determine the value of k, given that:
    ∫ 1


0

(x−k)
(3x+1)(x+1)

dx= 0

[
1
3

]


  1. The velocity constantkof a given chemical
    reaction is given by:


kt=

∫ (
1
(3− 0. 4 x)(2− 0. 6 x)

)
dx

wherex=0 when t = 0. Show that:

kt=ln

{
2(3− 0. 4 x)
3(2− 0. 6 x)

}

41.3 Worked problems on integration
using partial fractions with
repeated linear factors

Problem 5. Determine


2 x+ 3
(x−2)^2

dx.

It was shown in Problem 5, page 21:

2 x+ 3
(x−2)^2


2
(x−2)

+

7
(x−2)^2
Free download pdf