Higher Engineering Mathematics

(Greg DeLong) #1
INTEGRATION USING PARTIAL FRACTIONS 411

H

It was shown in Problem 9, page 23:


3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 +3)


2
x

+

1
x^2

+

3 − 4 x
(x^2 +3)

Thus



3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 +3)

dx


∫ (
2
x

+

1
x^2

+

(3− 4 x)
(x^2 +3)

)
dx

=

∫ {
2
x

+

1
x^2

+

3
(x^2 +3)


4 x
(x^2 +3)

}
dx


3
(x^2 +3)


dx= 3


1

x^2 +(


3)^2

dx

=


3

3

tan−^1

x

3

, from 12, Table 40.1, page 398.


4 x
x^2 + 3


dxis determined using the algebraic sub-

stitutionu=(x^2 +3).


Hence


∫ {
2
x

+

1
x^2

+

3
(x^2 +3)


4 x
(x^2 +3)

}
dx

=2lnx−

1
x

+

3

3

tan−^1

x

3
−2ln(x^2 +3)+c

=ln

(
x
x^2 + 3

) 2

1
x

+


3 tan−^1

x

3

+c

Problem 9. Determine


1
(x^2 −a^2 )

dx.

Let


1
(x^2 −a^2 )


A
(x−a)

+

B
(x+a)


A(x+a)+B(x−a)
(x+a)(x−a)

Equating the numerators gives:


1 ≡A(x+a)+B(x−a)

Let x=a, then A=


1
2 a

, and let x=−a, then

B=−


1
2 a

Hence


1
(x^2 −a^2 )

dx



1
2 a

[
1
(x−a)


1
(x+a)

]
dx

=

1
2 a

[ln(x−a)−ln (x+a)]+c

=

1
2 a

ln

(
x−a
x+a

)
+c

Problem 10. Evaluate
∫ 4

3

3
(x^2 −4)

dx,

correct to 3 significant figures.

From Problem 9,
∫ 4

3

3
(x^2 −4)

dx= 3

[
1
2(2)

ln

(
x− 2
x+ 2

)] 4

3

=

3
4

[
ln

2
6

−ln

1
5

]

=

3
4

ln

5
3

= 0. 383 , correct to 3

significant figures

Problem 11. Determine


1
(a^2 −x^2 )

dx.

Using partial fractions, let

1
(a^2 −x^2 )


1
(a−x)(a+x)


A
(a−x)

+

B
(a+x)


A(a+x)+B(a−x)
(a−x)(a+x)

Then 1≡A(a+x)+B(a−x)

Letx=athenA=

1
2 a

. Letx=−athenB=


1
2 a

Hence


1
(a^2 −x^2 )

dx

=


1
2 a

[
1
(a−x)

+

1
(a+x)

]
dx
Free download pdf