INTEGRATION USING PARTIAL FRACTIONS 411
H
It was shown in Problem 9, page 23:
3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 +3)
≡
2
x
+
1
x^2
+
3 − 4 x
(x^2 +3)
Thus
∫
3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 +3)
dx
≡
∫ (
2
x
+
1
x^2
+
(3− 4 x)
(x^2 +3)
)
dx
=
∫ {
2
x
+
1
x^2
+
3
(x^2 +3)
−
4 x
(x^2 +3)
}
dx
∫
3
(x^2 +3)
dx= 3
∫
1
x^2 +(
√
3)^2
dx
=
3
√
3
tan−^1
x
√
3
, from 12, Table 40.1, page 398.
∫
4 x
x^2 + 3
dxis determined using the algebraic sub-
stitutionu=(x^2 +3).
Hence
∫ {
2
x
+
1
x^2
+
3
(x^2 +3)
−
4 x
(x^2 +3)
}
dx
=2lnx−
1
x
+
3
√
3
tan−^1
x
√
3
−2ln(x^2 +3)+c
=ln
(
x
x^2 + 3
) 2
−
1
x
+
√
3 tan−^1
x
√
3
+c
Problem 9. Determine
∫
1
(x^2 −a^2 )
dx.
Let
1
(x^2 −a^2 )
≡
A
(x−a)
+
B
(x+a)
≡
A(x+a)+B(x−a)
(x+a)(x−a)
Equating the numerators gives:
1 ≡A(x+a)+B(x−a)
Let x=a, then A=
1
2 a
, and let x=−a, then
B=−
1
2 a
Hence
∫
1
(x^2 −a^2 )
dx
≡
∫
1
2 a
[
1
(x−a)
−
1
(x+a)
]
dx
=
1
2 a
[ln(x−a)−ln (x+a)]+c
=
1
2 a
ln
(
x−a
x+a
)
+c
Problem 10. Evaluate
∫ 4
3
3
(x^2 −4)
dx,
correct to 3 significant figures.
From Problem 9,
∫ 4
3
3
(x^2 −4)
dx= 3
[
1
2(2)
ln
(
x− 2
x+ 2
)] 4
3
=
3
4
[
ln
2
6
−ln
1
5
]
=
3
4
ln
5
3
= 0. 383 , correct to 3
significant figures
Problem 11. Determine
∫
1
(a^2 −x^2 )
dx.
Using partial fractions, let
1
(a^2 −x^2 )
≡
1
(a−x)(a+x)
≡
A
(a−x)
+
B
(a+x)
≡
A(a+x)+B(a−x)
(a−x)(a+x)
Then 1≡A(a+x)+B(a−x)
Letx=athenA=
1
2 a
. Letx=−athenB=
1
2 a
Hence
∫
1
(a^2 −x^2 )
dx
=
∫
1
2 a
[
1
(a−x)
+
1
(a+x)
]
dx