414 INTEGRAL CALCULUS
=
∫^1
2 t
1 +t^2
(
2 dt
1 +t^2
)
=
∫
1
t
dt=lnt+c
Hence
∫
dθ
sinθ
=ln
(
tan
θ
2
)
+c
Problem 2. Determine:
∫
dx
cosx
If tan
x
2
then cosx=
1 −t^2
1 +t^2
and dx=
2dt
1 +t^2
from
equations (2) and (3).
Thus
∫
dx
cosx
=
∫
1
1 −t^2
1 +t^2
(
2dt
1 +t^2
)
=
∫
2
1 −t^2
dt
2
1 −t^2
may be resolved into partial fractions (see
Chapter 3).
Let
2
1 −t^2
=
2
(1−t)(1+t)
=
A
(1−t)
+
B
(1+t)
=
A(1+t)+B(1−t)
(1−t)(1+t)
Hence 2 =A(1+t)+B(1−t)
When t=1, 2= 2 A, from which,A= 1
When t=−1, 2= 2 B, from which,B= 1
Hence
∫
2dt
1 −t^2
=
∫
1
(1−t)
+
1
(1+t)
dt
=−ln(1−t)+ln(1+t)+c
=ln
{
(1+t)
(1−t)
}
+c
Thus
∫
dx
cosx
=ln
⎧
⎪⎨
⎪⎩
1 +tan
x
2
1 −tan
x
2
⎫
⎪⎬
⎪⎭
+c
Note that since tan
π
4
=1, the above result may be
written as:
∫
dx
cosx
=ln
⎧
⎪⎨
⎪⎩
tan
π
4
+tan
x
2
1 −tan
π
4
tan
x
2
⎫
⎪⎬
⎪⎭
+c
=ln
{
tan
(π
4
+
x
2
)}
+c
from compound angles, Chapter 18.
Problem 3. Determine:
∫
dx
1 +cosx
If tan
x
2
then cosx=
1 −t^2
1 +t^2
and dx=
2dt
1 +t^2
from
equations (2) and (3).
Thus
∫
dx
1 +cosx
=
∫
1
1 +cosx
dx
=
∫
1
1 +
1 −t^2
1 +t^2
(
2dt
1 +t^2
)
=
∫
1
(1+t^2 )+(1−t^2 )
1 +t^2
(
2dt
1 +t^2
)
=
∫
dt
Hence
∫
dx
1 +cosx
=t+c=tan
x
2
+c
Problem 4. Determine:
∫
dθ
5 +4 cosθ
If t=tan
θ
2
then cosθ=
1 −t^2
1 +t^2
and dx=
2dt
1 +t^2
from equations (2) and (3).
Thus
∫
dθ
5 +4 cosθ
=
∫
(
2dt
1 +t^2
)
5 + 4
(
1 −t^2
1 +t^2
)
=
∫
(
2dt
1 +t^2
)
5(1+t^2 )+4(1−t^2 )
(1+t^2 )
= 2
∫
dt
t^2 + 9
= 2
∫
dt
t^2 + 32
= 2
(
1
3
tan−^1
t
3
)
+c,