Higher Engineering Mathematics

(Greg DeLong) #1

414 INTEGRAL CALCULUS


=

∫^1
2 t
1 +t^2

(
2 dt
1 +t^2

)

=


1
t

dt=lnt+c

Hence




sinθ

=ln

(
tan

θ
2

)
+c

Problem 2. Determine:


dx
cosx

If tan


x
2

then cosx=

1 −t^2
1 +t^2

and dx=

2dt
1 +t^2

from

equations (2) and (3).


Thus



dx
cosx

=


1
1 −t^2
1 +t^2

(
2dt
1 +t^2

)

=


2
1 −t^2

dt

2
1 −t^2

may be resolved into partial fractions (see

Chapter 3).


Let

2
1 −t^2

=

2
(1−t)(1+t)

=

A
(1−t)

+

B
(1+t)

=

A(1+t)+B(1−t)
(1−t)(1+t)
Hence 2 =A(1+t)+B(1−t)
When t=1, 2= 2 A, from which,A= 1
When t=−1, 2= 2 B, from which,B= 1

Hence


2dt
1 −t^2

=


1
(1−t)

+

1
(1+t)

dt

=−ln(1−t)+ln(1+t)+c

=ln

{
(1+t)
(1−t)

}
+c

Thus



dx
cosx

=ln


⎪⎨

⎪⎩

1 +tan

x
2
1 −tan

x
2


⎪⎬

⎪⎭

+c

Note that since tan


π
4

=1, the above result may be

written as:



dx
cosx

=ln


⎪⎨

⎪⎩

tan

π
4

+tan

x
2
1 −tan

π
4

tan

x
2


⎪⎬

⎪⎭

+c

=ln

{
tan


4

+

x
2

)}
+c

from compound angles, Chapter 18.

Problem 3. Determine:


dx
1 +cosx

If tan

x
2

then cosx=

1 −t^2
1 +t^2

and dx=

2dt
1 +t^2

from
equations (2) and (3).

Thus


dx
1 +cosx

=


1
1 +cosx

dx

=


1

1 +

1 −t^2
1 +t^2

(
2dt
1 +t^2

)

=


1
(1+t^2 )+(1−t^2 )
1 +t^2

(
2dt
1 +t^2

)

=


dt

Hence


dx
1 +cosx

=t+c=tan

x
2

+c

Problem 4. Determine:



5 +4 cosθ

If t=tan

θ
2

then cosθ=

1 −t^2
1 +t^2

and dx=

2dt
1 +t^2
from equations (2) and (3).

Thus



5 +4 cosθ

=


(
2dt
1 +t^2

)

5 + 4

(
1 −t^2
1 +t^2

)

=


(
2dt
1 +t^2

)

5(1+t^2 )+4(1−t^2 )
(1+t^2 )

= 2


dt
t^2 + 9

= 2


dt
t^2 + 32

= 2

(
1
3

tan−^1

t
3

)
+c,
Free download pdf