Higher Engineering Mathematics

(Greg DeLong) #1

416 INTEGRAL CALCULUS


from 12, Table 40.1, page 398. Hence

dx
7 −3 sinx+6 cosx


=tan−^1




tan

x
2

− 3

2



⎠+c

Problem 7. Determine:



4 cosθ+3 sinθ

From equations (1) to (3),


4 cosθ+3 sinθ


=


2dt
1 +t^2

4

(
1 −t^2
1 +t^2

)
+ 3

(
2 t
1 +t^2

)

=


2dt
4 − 4 t^2 + 6 t

=


dt
2 + 3 t− 2 t^2

=−

1
2


dt

t^2 −

3
2

t− 1

=−

1
2


dt
(
t−

3
4

) 2

25
16

=

1
2


dt
(
5
4

) 2

(
t−

3
4

) 2

=

1
2





1

2

(
5
4

)ln


⎪⎪

⎪⎪

5
4

+

(
t−

3
4

)

5
4


(
t−

3
4

)


⎪⎪

⎪⎪




⎦+c

from problem 11, Chapter 41, page 411

=

1
5

ln


⎪⎨

⎪⎩

1
2

+t

2 −t


⎪⎬

⎪⎭

+c

Hence




4 cosθ+3 sinθ

=

1
5

ln


⎪⎨

⎪⎩

1
2

+tan

θ
2

2 −tan

θ
2


⎪⎬

⎪⎭

+c

or

1
5

ln


⎪⎨

⎪⎩

1 +2 tan

θ
2

4 −2 tan

θ
2


⎪⎬

⎪⎭

+c

Now try the following exercise.

Exercise 167 Further problems on the
t=tanθ/2 substitution

In Problems 1 to 4, integrate with respect to the
variable.

1.



5 +4 sinθ



2
3

tan−^1




5 tan

θ
2

+ 4

3



⎠+c




2.


dx
1 +2 sinx



1

3

ln


⎪⎨

⎪⎩

tan

x
2

+ 2 −


3

tan

x
2

+ 2 +


3


⎪⎬

⎪⎭

+c




3.


dp
3 −4 sinp+2 cosp



1

11

ln


⎪⎨

⎪⎩

tan

p
2

− 4 −


11

tan

p
2

− 4 +


11


⎪⎬

⎪⎭

+c




4.



3 −4 sinθ



1

7

ln


⎪⎨

⎪⎩

3 tan

θ
2

− 4 −


7

3 tan

θ
2

− 4 +


7


⎪⎬

⎪⎭

+c





  1. Show that

    dt
    1 +3 cost


=

1
2


2

ln


⎪⎨

⎪⎩


2 +tan

t
2

2 −tan

t
2


⎪⎬

⎪⎭

+c


  1. Show that


∫π/ 3

0

3dθ
cosθ

= 3 .95, correct to 3

significant figures.


  1. Show that


∫π/ 2

0


2 +cosθ

=

π
3


3
Free download pdf