420 INTEGRAL CALCULUS
From Problem 1,
∫
xcosxdx=xsinx+cosx
Hence
∫
x^2 sinxdx
=−x^2 cosx+ 2 {xsinx+cosx}+c
=−x^2 cosx+ 2 xsinx+2 cosx+c
= (2−x^2 )cosx+ 2 xsinx+c
In general, if the algebraic term of a product is of
powern, then the integration by parts formula is
appliedntimes.
Now try the following exercise.
Exercise 168 Further problems on integra-
tion by parts
Determine the integrals in Problems 1 to 5 using
integration by parts.
1.
∫
xe^2 xdx
[[
e^2 x
2
(
x−
1
2
)]
+c
]
2.
∫
4 x
e^3 x
dx
[
−
4
3
e−^3 x
(
x+
1
3
)
+c
]
3.
∫
xsinxdx [−xcosx+sinx+c]
4.
∫
5 θcos 2θdθ
[
5
2
(
θsin 2θ+^12 cos 2θ
)
+c
]
5.
∫
3 t^2 e^2 tdt
[ 3
2 e
2 t(t (^2) −t+ 1
2
)
+c
]
Evaluate the integrals in Problems 6 to 9, correct
to 4 significant figures.
6.
∫ 2
0
2 xexdx [16.78]
7.
∫π
4
0
xsin 2xdx [0.2500]
8.
∫π
2
0
t^2 costdt [0.4674]
9.
∫ 2
1
3 x^2 e
x
(^2) dx [15.78]
43.3 Further worked problems on
integration by parts
Problem 6. Find
∫
xlnxdx.
The logarithmic function is chosen as the ‘upart’.
Thus whenu=lnx, then
du
dx
1
x
, i.e. du=
dx
x
Letting dv=xdxgivesv=
∫
xdx=
x^2
2
Substituting into
∫
udv=uv−
∫
vdugives:
∫
xlnxdx=(lnx)
(
x^2
2
)
−
∫ (
x^2
2
)
dx
x
x^2
2
lnx−
1
2
∫
xdx
x^2
2
lnx−
1
2
(
x^2
2
)
+c
Hence
∫
xlnxdx=
x^2
2
(
lnx−
1
2
)
+cor
x^2
4
(2 lnx−1)+c
Problem 7. Determine
∫
lnxdx.
∫
lnxdxis the same as
∫
(1) lnxdx
Letu=lnx, from which,
du
dx
1
x
, i.e. du=
dx
x
and let dv=1dx, from which,v=
∫
1dx=x
Substituting into
∫
udv=uv−
∫
vdugives:
∫
lnxdx=(lnx)(x)−
∫
x
dx
x
=xlnx−
∫
dx=xlnx−x+c
Hence
∫
lnxdx=x(lnx−1)+c
Problem 8. Evaluate
∫ 9
1
√
xlnxdx, correct to
3 significant figures.