Higher Engineering Mathematics

(Greg DeLong) #1

422 INTEGRAL CALCULUS


i.e.

(
1 +

a^2
b^2

)∫
eaxcosbxdx

=

1
b

eaxsinbx+

a
b^2

eaxcosbx

i.e.

(
b^2 +a^2
b^2

)∫
eaxcosbxdx

=

eax
b^2

(bsinbx+acosbx)

Hence


eaxcosbxdx

=

(
b^2
b^2 +a^2

)(
eax
b^2

)
(bsinbx+acosbx)

=

eax
a^2 +b^2

(bsinbx+acosbx)+c

Using a similar method to above, that is, integrating
by parts twice, the following result may be proved:



eaxsinbxdx

=

eax
a^2 +b^2

(asinbx−bcosbx)+c (2)

Problem 10. Evaluate

∫ π
4
0

etsin 2tdt, correct

to 4 decimal places.

Comparing



etsin 2tdtwith


eaxsinbxdxshows
thatx=t,a=1 andb=2.


Hence, substituting into equation (2) gives:


∫π
4

0

etsin 2tdt

=

[
et
12 + 22

(1 sin 2t−2 cos 2t)


4

0

=

[
e

π
4
5

(
sin 2


4

)
−2 cos 2


4

))

]


[
e^0
5

(sin 0−2 cos 0)

]

=

[
e

π
4
5

(1−0)

]


[
1
5

(0−2)

]
=

e

π
4
5

+

2
5

=0.8387, correct to 4 decimal places

Now try the following exercise.

Exercise 169 Further problems on integra-
tion by parts

Determine the integrals in Problems 1 to 5 using
integration by parts.

1.


2 x^2 lnxdx

[
2
3

x^3

(
lnx−

1
3

)
+c

]

2.


2ln3xdx [2x(ln 3x−1)+c]

3.


x^2 sin 3xdx

[
cos 3x
27

(2− 9 x^2 )+

2
9

xsin 3x+c

]

4.


2e^5 xcos 2xdx
[
2
29

e^5 x(2 sin 2x+5 cos 2x)+c

]

5.


2 θsec^2 θdθ [2[θtanθ−ln(secθ)]+c]

Evaluate the integrals in Problems 6 to 9, correct
to 4 significant figures.

6.

∫ 2

1

xlnxdx [0.6363]

7.

∫ 1

0

2e^3 xsin 2xdx [11.31]

8.

∫ π
2

0

etcos 3tdt [− 1 .543]

9.

∫ 4

1


x^3 lnxdx [12.78]
Free download pdf