422 INTEGRAL CALCULUS
i.e.
(
1 +
a^2
b^2
)∫
eaxcosbxdx
=
1
b
eaxsinbx+
a
b^2
eaxcosbx
i.e.
(
b^2 +a^2
b^2
)∫
eaxcosbxdx
=
eax
b^2
(bsinbx+acosbx)
Hence
∫
eaxcosbxdx
=
(
b^2
b^2 +a^2
)(
eax
b^2
)
(bsinbx+acosbx)
=
eax
a^2 +b^2
(bsinbx+acosbx)+c
Using a similar method to above, that is, integrating
by parts twice, the following result may be proved:
∫
eaxsinbxdx
=
eax
a^2 +b^2
(asinbx−bcosbx)+c (2)
Problem 10. Evaluate
∫ π
4
0
etsin 2tdt, correct
to 4 decimal places.
Comparing
∫
etsin 2tdtwith
∫
eaxsinbxdxshows
thatx=t,a=1 andb=2.
Hence, substituting into equation (2) gives:
∫π
4
0
etsin 2tdt
=
[
et
12 + 22
(1 sin 2t−2 cos 2t)
]π
4
0
=
[
e
π
4
5
(
sin 2
(π
4
)
−2 cos 2
(π
4
))
]
−
[
e^0
5
(sin 0−2 cos 0)
]
=
[
e
π
4
5
(1−0)
]
−
[
1
5
(0−2)
]
=
e
π
4
5
+
2
5
=0.8387, correct to 4 decimal places
Now try the following exercise.
Exercise 169 Further problems on integra-
tion by parts
Determine the integrals in Problems 1 to 5 using
integration by parts.
1.
∫
2 x^2 lnxdx
[
2
3
x^3
(
lnx−
1
3
)
+c
]
2.
∫
2ln3xdx [2x(ln 3x−1)+c]
3.
∫
x^2 sin 3xdx
[
cos 3x
27
(2− 9 x^2 )+
2
9
xsin 3x+c
]
4.
∫
2e^5 xcos 2xdx
[
2
29
e^5 x(2 sin 2x+5 cos 2x)+c
]
5.
∫
2 θsec^2 θdθ [2[θtanθ−ln(secθ)]+c]
Evaluate the integrals in Problems 6 to 9, correct
to 4 significant figures.
6.
∫ 2
1
xlnxdx [0.6363]
7.
∫ 1
0
2e^3 xsin 2xdx [11.31]
8.
∫ π
2
0
etcos 3tdt [− 1 .543]
9.
∫ 4
1
√
x^3 lnxdx [12.78]