Higher Engineering Mathematics

(Greg DeLong) #1

428 INTEGRAL CALCULUS


du
dx

=(n−1) sinn−^2 xcosx and

du=(n−1) sinn−^2 xcosxdx

and let dv=sinxdx, from which,
v=



sinxdx=−cosx. Hence,

In=



sinn−^1 xsinxdx

=(sinn−^1 x)(−cosx)



(−cosx)(n−1) sinn−^2 xcosxdx

=−sinn−^1 xcosx

+(n−1)


cos^2 xsinn−^2 xdx

=−sinn−^1 xcosx

+(n−1)


(1−sin^2 x) sinn−^2 xdx

=−sinn−^1 xcosx

+(n−1)

{∫
sinn−^2 xdx−


sinnxdx

}

i.e. In=−sinn−^1 xcosx


+(n−1)In− 2 −(n−1)In

i.e. In+(n−1)In


=−sinn−^1 xcosx+(n−1)In− 2

and nIn=−sinn−^1 xcosx+(n−1)In− 2


from which,


sinnxdx=

In=−

1
n

sinn−^1 xcosx+

n− 1
n

In− 2 (4)

Problem 8. Use a reduction formula to deter-
mine


sin^4 xdx.

Using equation (4),



sin^4 xdx=I 4 =−

1
4

sin^3 xcosx+

3
4

I 2

I 2 =−

1
2

sin^1 xcosx+

1
2

I 0

and I 0 =


sin^0 xdx=


1dx=x

Hence

sin^4 xdx=I 4 =−

1
4

sin^3 xcosx

+

3
4

[

1
2

sinxcosx+

1
2

(x)

]

=−

1
4

sin^3 xcosx−

3
8

sinxcosx

+

3
8

x+c

Problem 9. Evaluate

∫ 1
0 4 sin

(^5) tdt, correct to 3
significant figures.
Using equation (4),

sin^5 tdt=I 5 =−
1
5
sin^4 tcost+
4
5
I 3
I 3 =−
1
3
sin^2 tcost+
2
3
I 1
and I 1 =−
1
1
sin^0 tcost+ 0 =−cost
Hence

sin^5 tdt=−
1
5
sin^4 tcost



  • 4
    5
    [

    1
    3
    sin^2 tcost+
    2
    3
    (−cost)
    ]
    =−
    1
    5
    sin^4 tcost−
    4
    15
    sin^2 tcost

    8
    15
    cost+c
    and
    ∫t
    0
    4 sin^5 tdt
    = 4
    [

    1
    5
    sin^4 tcost

    4
    15
    sin^2 tcost−
    8
    15
    cost
    ] 1
    0
    = 4
    [(

    1
    5
    sin^4 1 cos 1−
    4
    15
    sin^2 1 cos 1

    8
    15
    cos 1
    )

    (
    − 0 − 0 −
    8
    15
    )]

Free download pdf