NUMERICAL INTEGRATION 439H
With 6 intervals, each will have a width of
π
3− 06
i.e.
π
18rad (or 10◦), and the ordinates will occur at0,
π
18,π
9,π
6,2 π
9,5 π
18andπ
3Corresponding values of
√(1 −1
3sin^2 θ)
areshown in the table below.
θ 0π
18π
9π
6
(or 10◦) (or 20◦) (or 30◦)
√(1 −1
3sin^2 θ)
1.0000 0.9950 0.9803 0.9574θ2 π
95 π
18π
3
(or 40◦) (or 50◦) (or 60◦)
√(1 −1
3sin^2 θ)
0.9286 0.8969 0.8660From Equation (5)
∫ π
30√(1 −1
3sin^2 θ)
dθ≈1
3(π18)
[(1. 0000 + 0 .8660)+4(0. 9950+ 0. 9574 + 0 .8969)+2(0. 9803 + 0 .9286)]=1
3(π18)
[1. 8660 + 11. 3972 + 3 .8178]=0.994, correct to 3 decimal placesProblem 8. An alternating current i has
the following values at equal intervals of
2.0 millisecondsTime (ms) Currenti(A)
00
2.0 3.5
4.0 8.2
6.0 10.08.0 7.3
10.0 2.0
12.0 0Charge, q, in millicoulombs, is given by
q=∫ 12. 0
0 idt.Use Simpson’s rule to determine the approxi-
mate charge in the 12 millisecond period.From equation (5):Charge,q=∫ 12. 00idt≈1
3(2.0)[(0+0)+4(3. 5+ 10. 0 + 2 .0)+2(8. 2 + 7 .3)]=62 mCNow try the following exercise.Exercise 176 Further problems on
Simpson’s ruleIn problems 1 to 5, evaluate the definite inte-
grals usingSimpson’s rule, giving the answers
correct to 3 decimal places.1.∫π
20√
(sinx)dx (Use 6 intervals) [1.187]2.∫ 1. 601
1 +θ^4dθ (Use 8 intervals) [1.034]3.∫ 1. 00. 2sinθ
θdθ (Use 8 intervals) [0.747]4.∫π
2
0xcosxdx (Use 6 intervals) [0.571]5.∫π
30ex2
sin 2xdx (Use 10 intervals)[1.260]In problems 6 and 7 evaluate the definite inte-
grals using (a) integration, (b) the trapezoidal
rule, (c) the mid-ordinate rule, (d) Simpson’s
rule. Give answers correct to 3 decimal places.