NUMERICAL INTEGRATION 439
H
With 6 intervals, each will have a width of
π
3
− 0
6
i.e.
π
18
rad (or 10◦), and the ordinates will occur at
0,
π
18
,
π
9
,
π
6
,
2 π
9
,
5 π
18
and
π
3
Corresponding values of
√(
1 −
1
3
sin^2 θ
)
are
shown in the table below.
θ 0
π
18
π
9
π
6
(or 10◦) (or 20◦) (or 30◦)
√(
1 −
1
3
sin^2 θ
)
1.0000 0.9950 0.9803 0.9574
θ
2 π
9
5 π
18
π
3
(or 40◦) (or 50◦) (or 60◦)
√(
1 −
1
3
sin^2 θ
)
0.9286 0.8969 0.8660
From Equation (5)
∫ π
3
0
√(
1 −
1
3
sin^2 θ
)
dθ
≈
1
3
(π
18
)
[(1. 0000 + 0 .8660)+4(0. 9950
+ 0. 9574 + 0 .8969)
+2(0. 9803 + 0 .9286)]
=
1
3
(π
18
)
[1. 8660 + 11. 3972 + 3 .8178]
=0.994, correct to 3 decimal places
Problem 8. An alternating current i has
the following values at equal intervals of
2.0 milliseconds
Time (ms) Currenti(A)
00
2.0 3.5
4.0 8.2
6.0 10.0
8.0 7.3
10.0 2.0
12.0 0
Charge, q, in millicoulombs, is given by
q=
∫ 12. 0
0 idt.
Use Simpson’s rule to determine the approxi-
mate charge in the 12 millisecond period.
From equation (5):
Charge,q=
∫ 12. 0
0
idt≈
1
3
(2.0)[(0+0)+4(3. 5
+ 10. 0 + 2 .0)+2(8. 2 + 7 .3)]
=62 mC
Now try the following exercise.
Exercise 176 Further problems on
Simpson’s rule
In problems 1 to 5, evaluate the definite inte-
grals usingSimpson’s rule, giving the answers
correct to 3 decimal places.
1.
∫π
2
0
√
(sinx)dx (Use 6 intervals) [1.187]
2.
∫ 1. 6
0
1
1 +θ^4
dθ (Use 8 intervals) [1.034]
3.
∫ 1. 0
0. 2
sinθ
θ
dθ (Use 8 intervals) [0.747]
4.
∫π
2
0
xcosxdx (Use 6 intervals) [0.571]
5.
∫π
3
0
ex
2
sin 2xdx (Use 10 intervals)
[1.260]
In problems 6 and 7 evaluate the definite inte-
grals using (a) integration, (b) the trapezoidal
rule, (c) the mid-ordinate rule, (d) Simpson’s
rule. Give answers correct to 3 decimal places.