HOMOGENEOUS FIRST ORDER DIFFERENTIAL EQUATIONS 453I
(iii) Substituting foryand
dy
dxgives:v+xdv
dx=2 x^2 + 12 x(vx)− 10 (vx)^2
7 x^2 − 7 x(vx)=2 + 12 v− 10 v^2
7 − 7 v(iv) Separating the variables gives:xdv
dx=2 + 12 v− 10 v^2
7 − 7 v−v=(2+ 12 v− 10 v^2 )−v(7− 7 v)
7 − 7 v=2 + 5 v− 3 v^2
7 − 7 vHence,7 − 7 v
2 + 5 v− 3 v^2dv=dx
xIntegrating both sides gives:∫ (
7 − 7 v
2 + 5 v− 3 v^2)
dv=∫
1
xdxResolving7 − 7 v
2 + 5 v− 3 v^2into partial fractionsgives:4
( 1 + 3 v)−1
( 2 −v)(see chapter 3)Hence,∫ (
4
( 1 + 3 v)−1
( 2 −v))
dv=∫
1
xdxi.e.4
3ln (1+ 3 v)+ln (2−v)=lnx+c(v) Replacingvbyy
xgives:4
3ln(
1 +3 y
x)
+ln(
2 −y
x)
=ln+cor4
3ln(
x+ 3 y
x)
+ln(
2 x−y
x)
=ln+cWhenx=1,y=0, thus:4
3ln 1+ln 2=ln 1+c
from which,c=ln 2Hence, the particular solution is:
4
3ln(
x+ 3 y
x)
+ln(
2 x−y
x)
=ln+ln 2i.e. ln(
x+ 3 y
x) 4
3(
2 x−y
x)
=ln(2x)from the laws of logarithmsi.e.(
x+ 3 y
x)^4
3(
2 x−y
x)
= 2 xProblem 4. Show that the solution of the
differential equation:x^2 − 3 y^2 + 2 xydy
dx=0 is:y=x√
( 8 x+ 1 ), given thaty=3 whenx=1.Using the procedure of section 47.2:(i) Rearranging gives:2 xydy
dx= 3 y^2 −x^2 anddy
dx=3 y^2 −x^2
2 xy(ii) Lety=vxthendy
dx=v+xdv
dx(iii) Substituting foryanddy
dxgives:v+xdv
dx=3 (vx)^2 −x^2
2 x(vx)=3 v^2 − 1
2 v(iv) Separating the variables gives:xdv
dx=3 v^2 − 1
2 v−v=3 v^2 − 1 − 2 v^2
2 v=v^2 − 1
2 vHence,2 v
v^2 − 1dv=1
xdxIntegrating both sides gives:
∫
2 v
v^2 − 1dv=∫
1
xdxi.e. ln (v^2 −1)=lnx+c(v) Replacing v byy
xgives:ln(
y^2
x^2− 1)
=lnx+c,which is the general solution.