454 DIFFERENTIAL EQUATIONS
Wheny=3,x=1, thus: ln(
9
1− 1)
=ln 1+cfrom which,c=ln 8Hence, the particular solution is:ln(
y^2
x^2− 1)
=lnx+ln 8=ln 8xby the laws of logarithms.Hence,(
y^2
x^2− 1)
= 8 x i.e.y^2
x^2= 8 x+1 andy^2 =x^2 ( 8 x+ 1 )
i.e. y=x√
( 8 x+ 1 )Now try the following exercise.
Exercise 182 Further problems on homoge-
neous first order differential equations- Solve the differential equation:
xy^3 dy=(x^4 +y^4 )dx [
y^4 = 4 x^4 (lnx+c)
]- Solve: (9xy− 11 xy)
dy
dx= 11 y^2 − 16 xy+ 3 x^2[
1
5{
3
13ln(
13 y− 3 x
x)
−ln(
y−x
x)}=lnx+c]- Solve the differential equation:
2 xdy
dx=x+ 3 y, given that whenx=1,y=1.
[
(x+y)^2 = 4 x^3]- Show that the solution of the differential
equation: 2xy
dy
dx=x^2 +y^2 can be expressedas:x=K(x^2 −y^2 ), where K is a constant.- Determine the particular solution of
dy
dx
=x^3 +y^3
xy^2, given thatx=1 wheny=4.[
y^3 =x^3 (3 lnx+64)]- Show that the solution of the differential
equation:dy
dx=y^3 −xy^2 −x^2 y− 5 x^3
xy^2 −x^2 y− 2 x^3is ofthe form:
y^2
2 x^2+4 y
x+18 ln(
y− 5 x
x)
=lnx+42,whenx=1 andy=6.