458 DIFFERENTIAL EQUATIONS
Whenx=−1,− 6 =− 3 A, from which,A= 2Whenx=2,3 = 3 B, from which,B= 1Hence∫
3 x− 3
(x+1)(x−2)dx=∫ [
2
x+ 1+1
x− 2]
dx=2ln(x+1)+ln(x−2)=ln[(x+1)^2 (x−2)](iii) Integrating factore∫Pdx=eln [(x+1)^2 (x−2)]=(x+1) (^2) (x−2)
(iv) Substituting in equation (3) gives:
y(x+1)^2 (x−2)
∫
(x+1)^2 (x−2)
1
x− 2
dx
∫
(x+1)^2 dx
(v)Hence the general solution is:
y(x+1)^2 (x−2)=^13 (x+1)^3 +c
(b) Whenx=−1,y=5 thus 5(0)(−3)= 0 +c, from
which,c=0.
Hencey(x+1)^2 (x−2)=^13 (x+1)^3
i.e.y=
(x+1)^3
3(x+1)^2 (x−2)
and hencethe particular solution is
y=
(x+ 1 )
3 (x− 2 )
Now try the following exercise.
Exercise 184 Further problems on linear
first order differential equations
In problems 1 and 2, solve the differential
equations
- cotx
dy
dx= 1 − 2 y,giveny=1 whenx=π
4.[y=^12 +cos^2 x]2.tdθ
dt+sect(tsint+cost)θ=sect,givent=πwhenθ=1.[
θ=1
t(sint−πcost)]- Given the equationx
dy
dx=2
x+ 2−yshowthat the particular solution isy=2
xln(x+2),
given the boundary conditions thatx=− 1
wheny=0.- Show that the solution of the differential
equation
dy
dx
−2(x+1)^3 =4
(x+1)yis y=(x+1)^4 ln(x+1)^2 , given thatx= 0
wheny=0.- Show that the solution of the differential
equation
dy
dx
+ky=asinbxis given by:y=(
a
k^2 +b^2)
(ksinbx−bcosbx)+(
k^2 +b^2 +ab
k^2 +b^2)
e−kx,giveny=1 whenx=0.- The equation
dv
dt=−(av+bt), whereaand
bare constants, represents an equation of
motion when a particle moves in a resisting
medium. Solve the equation forvgiven that
v=uwhent=0.
[
v=b
a^2−bt
a+(
u−b
a^2)
e−at]- In an alternating current circuit containing
resistanceRand inductanceLthe currentiis
given by:Ri+L
di
dt=E 0 sinωt.Giveni= 0
whent=0, show that the solution of the
equation is given by:i=(
E 0
R^2 +ω^2 L^2)
(Rsinωt−ωLcosωt)+(
E 0 ωL
R^2 +ω^2 L^2)
e−Rt/L