468 DIFFERENTIAL EQUATIONSFor line 6,x 1 = 2. 0yP 1 =y 0 +h(y′) 0
= 5. 85212176 + 0 .2(2.54787824)
= 6. 361697408
yC 1 =y 0 +^12 h[(y′) 0 +(3+ 3 x 1 −yP 1 )]= 5. 85212176 +^12 (0.2)[2. 54787824
+(3+3(2.0)− 6 .361697408)]
=6.370739843Problem 6. Using the integrating factor
method the solution of the differential equa-tiondy
dx=3(1+x)−y of Problem 5 isy= 3 x+e^1 −x. When x= 1 .6, compare the
accuracy, correct to 3 decimal places, of the
Euler and the Euler-Cauchy methods.Whenx= 1 .6,y= 3 x+e^1 −x=3(1.6)+e^1 −^1.^6 =
4. 8 +e−^0.^6 = 5 .348811636.
From Table 49.1, page 461, by Euler’s method,
whenx= 1 .6,y= 5. 312
% error in the Euler method
=(
5. 348811636 − 5. 312
5. 348811636)
×100%=0.688%From Table 49.11 of Problem 5, by the Euler-Cauchy
method, whenx= 1 .6,y= 5. 351368
% error in the Euler-Cauchy method=(
5. 348811636 − 5. 351368
5. 348811636)
×100%=−0.048%The Euler-Cauchy method is seen to be more accu-
rate than the Euler method whenx= 1 .6.
Now try the following exercise.Exercise 186 Further problems on an
improved Euler method- Apply the Euler-Cauchy method to solve the
differential equation
dy
dx
= 3 −y
xfor the range 1.0(0.1)1.5, given the initial
conditions thatx=1 wheny= 2.[see Table 49.12]Table 49.12xy y′1.0 2 1
1.1 2.10454546 1.08677686
1.2 2.216666672 1.152777773
1.3 2.33461539 1.204142008
1.4 2.457142859 1.2448987958
1.5 2.583333335- Solving the differential equation in Prob-
lem 1 by the integrating factor method gives
y=3
2x+1
2 x. Determine the percentage
error, correct to 3 significant figures, when
x= 1 .3 using (a) Euler’s method (see
Table 49.4, page 464), and (b) the Euler-
Cauchy method.
[(a) 0.412% (b) 0.000000214%]- (a) Apply the Euler-Cauchy method to solve
the differential equation
dy
dx−x=yfor the rangex=0tox= 0 .5 in incre-
ments of 0.1, given the initial conditions
that whenx=0,y= 1.(b) The solution of the differential equation
in part (a) is given byy=2ex−x−1.
Determine the percentage error, correct to
3 decimal places, whenx= 0. 4.[(a) see Table 49.13 (b) 0.117%]Table 49.13xy y′01 1
0.1 1.11 1.21
0.2 1.24205 1.44205
0.3 1.398465 1.698465
0.4 1.581804 1.981804
0.5 1.794893