NUMERICAL METHODS FOR FIRST ORDER DIFFERENTIAL EQUATIONS 471I
Table 49.16Euler’s Euler-Cauchy Runge-Kutta
method method method Exact value
x y y y y=x+ 1 +ex0 2 2 2 2
0.1 2.2 2.205 2.205171 2.205170918
0.2 2.41 2.421025 2.421403 2.421402758
0.3 2.631 2.649232625 2.649859 2.649858808
0.4 2.8641 2.89090205 2.891824 2.891824698
0.5 3.11051 3.147446765 3.148720 3.148721271It is seen from Table 49.16 thatthe Runge-Kutta
method is exact, correct to 5 decimal places.Problem 8. Obtain a numerical solution of
the differential equation:dy
dx=3(1+x)−yin
the range 1.0(0.2)2.0, using the Runge-Kutta
method, given the initial conditions thatx=1.0
wheny=4.0Using the above procedure:
1.x 0 = 1 .0,y 0 = 4 .0 and since h= 0 .2, and the
range is fromx=1.0 tox=2.0, thenx 1 = 1 .2,
x 2 = 1 .4,x 3 = 1 .6,x 4 = 1 .8, andx 5 = 2. 0Letn=0 to determiney 1 :
- k 1 =f(x 0 ,y 0 )=f(1.0, 4.0); since
dy
dx
=3(1+x)−y,f(1.0, 4.0)=3(1+ 1 .0)− 4. 0 =2.03.k 2 =f(
x 0 +h
2,y 0 +h
2k 1)=f(
1. 0 +0. 2
2,4. 0 +0. 2
2(2))=f(1.1, 4.2)=3(1+ 1 .1)− 4. 2 =2.14.k 3 =f(
x 0 +h
2,y 0 +h
2k 2)=f(
1. 0 +0. 2
2,4. 0 +0. 2
2(2.1))=f( 1 .1, 4. 21 )=3(1+ 1 .1)− 4. 21 =2.095.k 4 =f(x 0 +h,y 0 +hk 3 )=f(1. 0 + 0 .2, 4. 1 + 0 .2(2.09))=f(1.2, 4.418)=3(1+ 1 .2)− 4. 418 =2.1826.yn+ 1 =yn+h
6{k 1 + 2 k 2 + 2 k 3 +k 4 } and when
n=0:y 1 =y 0 +h
6{k 1 + 2 k 2 + 2 k 3 +k 4 }= 4. 0 +0. 2
6{ 2. 0 +2(2.1)+2(2.09)+ 2. 182 }= 4. 0 +0. 2
6{ 12. 562 }=4.418733A table of values is compiled in Table 49.17. The
working has been shown for the first two rows.Letn=1 to determiney 2 :- k 1 =f(x 1 ,y 1 )=f(1.2, 4.418733); since
dy
dx=3(1+x)−y, f(1.2, 4.418733)=3(1+ 1 .2)− 4. 418733 =2.1812673.k 2 =f(
x 1 +h
2,y 1 +h
2k 1)=f(
1. 2 +0. 2
2,4. 418733 +0. 2
2(2.181267))=f( 1 .3, 4. 636860 )=3(1+ 1 .3)− 4. 636860 =2.263140