Higher Engineering Mathematics

(Greg DeLong) #1
SECOND ORDER DIFFERENTIAL EQUATIONS (HOMOGENEOUS) 477

I

Whent=0,

dy
dt

= 3

thus 3=(0+B)

4
3

e^0 +Ae^0

i.e. 3=

4
3

B+Afrom which,A=−1, since
B=3.
Hence the particular solution is

y=(−t+3)e

4
3 t or

y=(3−t)e

4
3 t

Problem 3. Solve the differential equation
d^2 y
dx^2

+ 6

dy
dx

+ 13 y=0, given that when x=0,

y=3 and

dy
dx

=7.

Using the procedure of Section 50.2:


(a)

d^2 y
dx^2

+ 6

dy
dx

+ 13 y=0 in D-operator form is

(D^2 +6D+13)y=0, where D≡

d
dx

(b) Substitutingmfor D gives the auxiliary equation
m^2 + 6 m+ 13 =0.
Using the quadratic formula:


m=

− 6 ±


[(6)^2 −4(1)(13)]
2(1)

=

− 6 ±


(−16)
2

i.e.m=

− 6 ±j 4
2

=− 3 ±j 2

(c) Since the roots are complex,the general solu-
tion is
y=e−^3 x(Acos 2x+Bsin 2x)

(d) Whenx=0,y=3, hence


3 =e^0 (Acos 0+Bsin 0), i.e.A=3.
Sincey=e−^3 x(Acos 2x+Bsin 2x)

then

dy
dx

=e−^3 x(− 2 Asin 2x+ 2 Bcos 2x)

−3e−^3 x(Acos 2x+Bsin 2x),
by the product rule,
=e−^3 x[(2B− 3 A) cos 2x
−(2A+ 3 B) sin 2x]

Whenx=0,

dy
dx

=7,

hence 7=e^0 [(2B− 3 A) cos 0−(2A+ 3 B) sin 0]
i.e. 7= 2 B− 3 A, from which,B=8, sinceA=3.
Hence the particular solution is

y=e−^3 x(3 cos 2x+8 sin 2x)
Since, from Chapter 18, page 178,
acosωt+bsinωt=Rsin (ωt+α), where
R=


(a^2 +b^2 ) andα=tan−^1

a
b

then

3 cos 2x+8 sin 2x=


(3^2 + 82 ) sin (2x

+tan−^138 )

=


73 sin(2x+ 20. 56 ◦)

=


73 sin(2x+ 0 .359)

Thus the particular solution may also be
expressed as

y=


73 e−3xsin( 2 x+0.359)

Now try the following exercise.

Exercise 188 Further problems on differen-
tial equations of the form

a

d^2 y
dx^2

+b

dy
dx

+cy= 0

In Problems 1 to 3, determine the general solu-
tion of the given differential equations.


  1. 6


d^2 y
dt^2


dy
dt

− 2 y= 0
[
y=Ae

2
3 t+Be−

1
2 t

]


  1. 4


d^2 θ
dt^2

+ 4


dt

+θ= 0

[
θ=(At+B)e−

1
2 t

]

3.

d^2 y
dx^2

+ 2

dy
dx

+ 5 y= 0

[y=e−x(Acos 2x+Bsin 2x)]

In Problems 4 to 9, find the particular solu-
tion of the given differential equations for the
stated boundary conditions.
Free download pdf