SECOND ORDER DIFFERENTIAL EQUATIONS (HOMOGENEOUS) 477
I
Whent=0,
dy
dt
= 3
thus 3=(0+B)
4
3
e^0 +Ae^0
i.e. 3=
4
3
B+Afrom which,A=−1, since
B=3.
Hence the particular solution is
y=(−t+3)e
4
3 t or
y=(3−t)e
4
3 t
Problem 3. Solve the differential equation
d^2 y
dx^2
+ 6
dy
dx
+ 13 y=0, given that when x=0,
y=3 and
dy
dx
=7.
Using the procedure of Section 50.2:
(a)
d^2 y
dx^2
+ 6
dy
dx
+ 13 y=0 in D-operator form is
(D^2 +6D+13)y=0, where D≡
d
dx
(b) Substitutingmfor D gives the auxiliary equation
m^2 + 6 m+ 13 =0.
Using the quadratic formula:
m=
− 6 ±
√
[(6)^2 −4(1)(13)]
2(1)
=
− 6 ±
√
(−16)
2
i.e.m=
− 6 ±j 4
2
=− 3 ±j 2
(c) Since the roots are complex,the general solu-
tion is
y=e−^3 x(Acos 2x+Bsin 2x)
(d) Whenx=0,y=3, hence
3 =e^0 (Acos 0+Bsin 0), i.e.A=3.
Sincey=e−^3 x(Acos 2x+Bsin 2x)
then
dy
dx
=e−^3 x(− 2 Asin 2x+ 2 Bcos 2x)
−3e−^3 x(Acos 2x+Bsin 2x),
by the product rule,
=e−^3 x[(2B− 3 A) cos 2x
−(2A+ 3 B) sin 2x]
Whenx=0,
dy
dx
=7,
hence 7=e^0 [(2B− 3 A) cos 0−(2A+ 3 B) sin 0]
i.e. 7= 2 B− 3 A, from which,B=8, sinceA=3.
Hence the particular solution is
y=e−^3 x(3 cos 2x+8 sin 2x)
Since, from Chapter 18, page 178,
acosωt+bsinωt=Rsin (ωt+α), where
R=
√
(a^2 +b^2 ) andα=tan−^1
a
b
then
3 cos 2x+8 sin 2x=
√
(3^2 + 82 ) sin (2x
+tan−^138 )
=
√
73 sin(2x+ 20. 56 ◦)
=
√
73 sin(2x+ 0 .359)
Thus the particular solution may also be
expressed as
y=
√
73 e−3xsin( 2 x+0.359)
Now try the following exercise.
Exercise 188 Further problems on differen-
tial equations of the form
a
d^2 y
dx^2
+b
dy
dx
+cy= 0
In Problems 1 to 3, determine the general solu-
tion of the given differential equations.
- 6
d^2 y
dt^2
−
dy
dt
− 2 y= 0
[
y=Ae
2
3 t+Be−
1
2 t
]
- 4
d^2 θ
dt^2
+ 4
dθ
dt
+θ= 0
[
θ=(At+B)e−
1
2 t
]
3.
d^2 y
dx^2
+ 2
dy
dx
+ 5 y= 0
[y=e−x(Acos 2x+Bsin 2x)]
In Problems 4 to 9, find the particular solu-
tion of the given differential equations for the
stated boundary conditions.