478 DIFFERENTIAL EQUATIONS- 6
d^2 y
dx^2+ 5dy
dx− 6 y=0; whenx=0,y=5 and
dy
dx=−1.[
y=3e2
3 x+2e−3
2 x]- 4
d^2 y
dt^2− 5dy
dt+y=0; whent=0,y=1 and
dy
dt=−2.[
y=4e1
4 t−3et]- (9D^2 +30D+25)y=0, where D≡
d
dx;whenx=0,y=0 anddy
dx=2.
[
y= 2 xe−5
3 x]7.d^2 x
dt^2− 6dx
dt+ 9 x=0; whent=0,x=2 and
dx
dt=0. [x=2(1− 3 t)e^3 t]8.d^2 y
dx^2+ 6dy
dx+ 13 y=0; whenx=0,y=4 and
dy
dx=0. [y=2e−^3 x(2 cos 2x+3 sin 2x)]- (4D^2 +20D+125)θ=0, where D≡
d
dt;whent=0,θ=3 anddθ
dt= 2 .5.[θ=e−^2.^5 t(3 cos 5t+2 sin 5t)]50.4 Further worked problems on
practical differential equations of
the forma
d^2 y
dx^2
+b
dy
dx
+cy= 0
Problem 4. The equation of motion of a body
oscillating on the end of a spring isd^2 x
dt^2+ 100 x=0,wherexis the displacement in metres of the body
from its equilibrium position after timet sec-
onds. Determinexin terms oftgiven that attimet=0,x= 2 manddx
dt=0.An equation of the formd^2 x
dt^2+m^2 x=0 is a differ-
ential equation representing simple harmonic motion
(S.H.M.). Using the procedure of Section 50.2:(a)d^2 x
dt^2+ 100 x=0 in D-operator form is(D^2 +100)x=0.
(b) The auxiliary equation is m^2 + 100 =0, i.e.
m^2 =−100 andm=√
(−100), i.e.m=±j10.
(c) Since the roots are complex, the general solution
isx=e^0 (Acos 10t+Bsin 10t),
i.e.x=(Acos 10t+B sin 10t) metres
(d) Whent=0,x=2, thus 2=A
dx
dt=− 10 Asin 10t+ 10 Bcos 10tWhent=0,dx
dt= 0thus 0=− 10 Asin 0+ 10 Bcos 0, i.e.B= 0Hence the particular solution isx=2 cos 10tmetresProblem 5. Given the differential equation
d^2 V
dt^2=ω^2 V, whereωis a constant, show that
its solution may be expressed as:V=7 coshωt+3 sinhωtgiven the boundary conditions that whent=0,V=7 anddV
dt= 3 ω.Using the procedure of Section 50.2:(a)d^2 V
dt^2=ω^2 V, i.e.d^2 V
dt^2−ω^2 V=0 in D-operatorform is (D^2 −ω^2 )v=0, where D≡d
dx
(b) The auxiliary equation ism^2 −ω^2 =0, from
which,m^2 =ω^2 andm=±ω.
(c) Since the roots are real and different,the general
solution is
V=Aeωt+Be−ωt
(d) Whent=0,V=7 hence 7=A+B (1)
dV
dt=Aωeωt−Bωe−ωt