SECOND ORDER DIFFERENTIAL EQUATIONS (NON-HOMOGENEOUS) 483
I
(ii) Substituting m for D gives the auxil-
iary equationm^2 − 3 m=0. Factorising gives:
m(m−3)=0, from which,m=0orm=3.
(iii) Since the roots are real and different, the C.F.,
u=Ae^0 +Be^3 x, i.e.u=A+Be^3 x.
(iv) Since the C.F. contains a constant (i.e.A) then
let the P.I.,v=kx(see Table 51.1(a)).
(v) Substitutingv=kxinto (D^2 −3D)v=9gives
(D^2 −3D)kx=9.
D(kx)=kand D^2 (kx)=0.
Hence (D^2 −3D)kx= 0 − 3 k=9, from which,
k=−3.
Hence the P.I.,v=− 3 x.
(vi) The general solution is given byy=u+v, i.e.
y=A+Be^3 x− 3 x.
(vii) Whenx=0,y=0, thus 0=A+Be^0 −0, i.e.
0 =A+B (1)
dy
dx
= 3 Be^3 x−3;
dy
dx
=0 when x=0, thus
0 = 3 Be^0 −3 from which,B=1. From equa-
tion (1),A=−1.
Hence the particular solution is
y=− 1 +1e^3 x− 3 x,
i.e. y=e^3 x− 3 x− 1
Problem 3. Solve the differential equation
2
d^2 y
dx^2
− 11
dy
dx
+ 12 y= 3 x−2.
Using the procedure of Section 51.2:
(i) 2
d^2 y
dx^2
− 11
dy
dx
+ 12 y= 3 x−2 in D-operator
form is
(2D^2 −11D+12)y= 3 x− 2.
(ii) Substitutingmfor D gives the auxiliary equa-
tion 2m^2 − 11 m+ 12 =0. Factorising gives:
(2m−3)(m−4)=0, from which, m=^32 or
m=4.
(iii) Since the roots are real and different, the C.F.,
u=Ae
3
2 x+Be^4 x
(iv) Sincef(x)= 3 x−2 is a polynomial, let the P.I.,
v=ax+b(see Table 51.1(b)).
(v) Substitutingv=ax+binto
(2D^2 −11D+12)v= 3 x−2 gives:
(2D^2 −11D+12)(ax+b)= 3 x−2,
i.e.2D^2 (ax+b)−11D(ax+b)
+12(ax+b)= 3 x− 2
i.e. 0 − 11 a+ 12 ax+ 12 b= 3 x− 2
Equating the coefficients ofxgives: 12a=3,
from which,a=^14.
Equating the constant terms gives:
− 11 a+ 12 b=−2.
i.e.− 11
( 1
4
)
+ 12 b=−2 from which,
12 b=− 2 +
11
4
=
3
4
i.e.b=
1
16
Hence the P.I.,v=ax+b=
1
4
x+
1
16
(vi) The general solution is given byy=u+v, i.e.
y=Ae
3
2 x+Be^4 x+
1
4
x+
1
16
Now try the following exercise.
Exercise 190 Further problems on differen-
tial equations of the form
a
d^2 y
dx^2
+b
dy
dx
+cy=f(x) wheref(x) is a
constant or polynomial.
In Problems 1 and 2, find the general solutions
of the given differential equations.
- 2
d^2 y
dx^2
+ 5
dy
dx
− 3 y= 6
[
y=Ae
1
2 x+Be−^3 x− 2
]
- 6
d^2 y
dx^2
+ 4
dy
dx
− 2 y= 3 x− 2
[
y=Ae
1
3 x+Be−x− 2 −^32 x
]
In Problems 3 and 4 find the particular solutions
of the given differential equations.
- 3
d^2 y
dx^2
+
dy
dx
− 4 y=8; whenx=0,y=0 and
dy
dx
=0.
[
y=^27 (3e−
4
3 x+4ex)− 2
]