492 DIFFERENTIAL EQUATIONS
For example, if y=4 cos 2x,thend^6 y
dx^6=y(6)=4(2^6 ) cos(
2 x+6 π
2)=4(2^6 ) cos(2x+ 3 π)=4(2^6 ) cos(2x+π)=−256 cos 2x(iv) Ify=xa,y′=axa−^1 ,y′′=a(a−1)xa−^2 ,
y′′′=a(a−1)(a−2)xa−^3 ,andy(n)=a(a−1)(a−2).....(a−n+1)xa−nory(n)=a!
(a−n)!xa−n (4)whereais a positive integer.For example, ify= 2 x^6 , thend^4 y
dx^4=y(4)= (2)6!
(6−4)!x^6 −^4= (2)6 × 5 × 4 × 3 × 2 × 1
2 × 1x^2= 720 x^2(v) Ify=sinhax, y′=acoshaxy′′=a^2 sinhaxy′′′=a^3 coshax, and so on
Since sinhaxis not periodic (see graph on page
43), it is more difficult to find a general state-
ment fory(n). However, this is achieved with the
following general series:y(n)=an
2{[1+(−1)n] sinhax+[1−(−1)n] coshax} (5)For example, ify=sinh 2x, thend^5 y
dx^5=y(5)=25
2{[1+(−1)^5 ] sinh 2x+[1−(−1)^5 ] cosh 2x}=25
2{[0] sinh 2x+[2] cosh 2x}=32 cosh 2x(vi) Ify=coshax,y′=asinhax
y′′=a^2 coshax
y′′′=a^3 sinhax, and so onSince coshaxis not periodic (see graph on page
43), again it is more difficult to find a general
statement fory(n). However, this is achieved
with the following general series:y(n)=an
2{[1−(−1)n] sinhax+[1+(−1)n] coshax} (6)For example, ify=1
9cosh 3x,thend^7 y
dx^7=y(7)=(
1
9)
37
2(2 sinh 3x)=243 sinh 3x(vii) Ify=lnax,y′=1
x,y′′=−1
x^2,y′′′=2
x^3, and
so on.In general,y(n)=(− 1 )n−^1(n−1)!
xn(7)For example, ify=ln 5x, then
d^6 y
dx^6=y(6)=(−1)^6 −^1(
5!
x^6)
=−120
x^6Note that ify=lnx,y′=1
x; if in equation (7),n=1 theny′=(−1)^0(0)!
x^1(−1)^0 =1 and ify′=1
xthen(0)!= 1 (Checkthat (−1)^0 =1 and (0)!=1 on a calculator).Now try the following exercise.Exercise 194 Further problems on higher
order differential coefficients as seriesDetermine the following derivatives:- (a)y(4)wheny=e^2 x(b)y(5)wheny=8e
t
2[(a) 16 e^2 x(b)1
4et(^2) ]
- (a)y(4)wheny=sin 3t
(b)y(7)wheny=1
50sin 5θ[(a) 81 sin 3t (b)− 1562 .5 cos 5θ]