494 DIFFERENTIAL EQUATIONS
Differentiating each term ofx^2 y′′+ 2 xy′+y= 0
ntimes, using Leibniz’s theorem of equation (13),
gives:
{
y(n+2)x^2 +ny(n+1)(2x)+
n(n−1)
2!
y(n)(2)+ 0
}
+{y(n+1)(2x)+ny(n)(2)+ 0 }+{y(n)}= 0
i.e. x^2 y(n+2)+ 2 nxy(n+1)+n(n−1)y(n)
+ 2 xy(n+1)+ 2 ny(n)+y(n)= 0
i.e. x^2 y(n+2)+2(n+1)xy(n+1)
+(n^2 −n+ 2 n+1)y(n)= 0
or x^2 y(n+2)+ 2 (n+ 1 )xy(n+1)
+(n^2 +n+1)y(n)= 0
Problem 3. Differentiate the following
differential equationntimes:
(1+x^2 )y′′+ 2 xy′− 3 y= 0
By Leibniz’s equation, equation (13),
{
y(n+2)(1+x^2 )+ny(n+1)(2x)+
n(n−1)
2!
y(n)(2)+ 0
}
+ 2 {y(n+1)(x)+ny(n)(1)+ 0 }− 3 {y(n)}= 0
i.e. (1+x^2 )y(n+2)+ 2 nxy(n+1)+n(n−1)y(n)
+ 2 xy(n+1)+ 2 ny(n)− 3 y(n)= 0
or (1+x^2 )y(n+2)+2(n+1)xy(n+1)
+(n^2 −n+ 2 n−3)y(n)= 0
i.e. ( 1 +x^2 )y(n+2)+2(n+1)xy(n+1)
+(n^2 +n−3)y(n)= 0
Problem 4. Find the 5th derivative of
y=x^4 sinx
Ify=x^4 sinx, then using Leibniz’s equation with
u=sinxandv=x^4 gives:
y(n)=
[
sin
(
x+
nπ
2
)
x^4
]
+n
[
sin
(
x+
(n−1)π
2
)
4 x^3
]
+
n(n−1)
2!
[
sin
(
x+
(n−2)π
2
)
12 x^2
]
+
n(n−1)(n−2)
3!
[
sin
(
x+
(n−3)π
2
)
24 x
]
+
n(n−1)(n−2)(n−3)
4!
[
sin
(
x
+
(n−4)π
2
)
24
]
and y(5)=x^4 sin
(
x+
5 π
2
)
+ 20 x^3 sin (x+ 2 π)
+
(5)(4)
2
(12x^2 ) sin
(
x+
3 π
2
)
+
(5)(4)(3)
(3)(2)
(24x) sin(x+π)
+
(5)(4)(3)(2)
(4)(3)(2)
(24) sin
(
x+
π
2
)
Since sin
(
x+
5 π
2
)
≡sin
(
x+
π
2
)
≡cosx,
sin(x+ 2 π)≡sinx, sin
(
x+
3 π
2
)
≡−cosx,
and sin (x+π)≡−sinx,
then y(5)=x^4 cosx+ 20 x^3 sinx+ 120 x^2 (−cosx)
+ 240 x(−sinx)+120 cosx
i.e. y(^5 )=(x^4 − 120 x^2 + 120 )cosx
+( 20 x^3 − 240 x)sinx
Now try the following exercise.
Exercise 195 Further problems on Leibniz’s
theorem
Use the theorem of Leibniz in the following
problems:
- Obtain then’th derivative of:x^2 y
[
x^2 y(n)+ 2 nxy(n−1)+n(n−1)y(n−2)
]
- Ify=x^3 e^2 xfindy(n)and hencey(3).
⎡
⎢
⎣
y(n)=e^2 x 2 n−^3 { 8 x^3 + 12 nx^2
+n(n−1)(6x)+n(n−1)(n−2)}
y(3)=e^2 x(8x^3 + 36 x^2 + 36 x+6)
⎤
⎥
⎦