494 DIFFERENTIAL EQUATIONS
Differentiating each term ofx^2 y′′+ 2 xy′+y= 0
ntimes, using Leibniz’s theorem of equation (13),
gives:
{
y(n+2)x^2 +ny(n+1)(2x)+
n(n−1)
2!y(n)(2)+ 0}+{y(n+1)(2x)+ny(n)(2)+ 0 }+{y(n)}= 0i.e. x^2 y(n+2)+ 2 nxy(n+1)+n(n−1)y(n)
+ 2 xy(n+1)+ 2 ny(n)+y(n)= 0i.e. x^2 y(n+2)+2(n+1)xy(n+1)
+(n^2 −n+ 2 n+1)y(n)= 0or x^2 y(n+2)+ 2 (n+ 1 )xy(n+1)
+(n^2 +n+1)y(n)= 0Problem 3. Differentiate the following
differential equationntimes:
(1+x^2 )y′′+ 2 xy′− 3 y= 0By Leibniz’s equation, equation (13),
{
y(n+2)(1+x^2 )+ny(n+1)(2x)+n(n−1)
2!y(n)(2)+ 0}+ 2 {y(n+1)(x)+ny(n)(1)+ 0 }− 3 {y(n)}= 0i.e. (1+x^2 )y(n+2)+ 2 nxy(n+1)+n(n−1)y(n)
+ 2 xy(n+1)+ 2 ny(n)− 3 y(n)= 0or (1+x^2 )y(n+2)+2(n+1)xy(n+1)+(n^2 −n+ 2 n−3)y(n)= 0i.e. ( 1 +x^2 )y(n+2)+2(n+1)xy(n+1)
+(n^2 +n−3)y(n)= 0Problem 4. Find the 5th derivative of
y=x^4 sinxIfy=x^4 sinx, then using Leibniz’s equation with
u=sinxandv=x^4 gives:
y(n)=[
sin(
x+nπ
2)
x^4]+n[
sin(
x+(n−1)π
2)
4 x^3]+n(n−1)
2![
sin(
x+(n−2)π
2)
12 x^2]+n(n−1)(n−2)
3![
sin(
x+(n−3)π
2)
24 x]+n(n−1)(n−2)(n−3)
4![
sin(
x+(n−4)π
2)
24]and y(5)=x^4 sin(
x+5 π
2)
+ 20 x^3 sin (x+ 2 π)+(5)(4)
2(12x^2 ) sin(
x+3 π
2)+(5)(4)(3)
(3)(2)(24x) sin(x+π)+(5)(4)(3)(2)
(4)(3)(2)(24) sin(
x+π
2)Since sin(
x+5 π
2)
≡sin(
x+π
2)
≡cosx,sin(x+ 2 π)≡sinx, sin(
x+3 π
2)
≡−cosx,and sin (x+π)≡−sinx,then y(5)=x^4 cosx+ 20 x^3 sinx+ 120 x^2 (−cosx)
+ 240 x(−sinx)+120 cosxi.e. y(^5 )=(x^4 − 120 x^2 + 120 )cosx
+( 20 x^3 − 240 x)sinxNow try the following exercise.Exercise 195 Further problems on Leibniz’s
theoremUse the theorem of Leibniz in the following
problems:- Obtain then’th derivative of:x^2 y
[
x^2 y(n)+ 2 nxy(n−1)+n(n−1)y(n−2)
]- Ify=x^3 e^2 xfindy(n)and hencey(3).
⎡
⎢
⎣y(n)=e^2 x 2 n−^3 { 8 x^3 + 12 nx^2
+n(n−1)(6x)+n(n−1)(n−2)}
y(3)=e^2 x(8x^3 + 36 x^2 + 36 x+6)⎤⎥
⎦