496 DIFFERENTIAL EQUATIONS
(iv) Maclaurin’s theorem from page 67 may be
written as:
y=(y) 0 +x(y′) 0 +
x^2
2!
(y′′) 0 +
x^3
3!
(y′′′) 0
+
x^4
4!
(y(4)) 0 + ···
Substituting the above values into Maclaurin’s
theorem gives:
y=(y) 0 +x(y′) 0 +
x^2
2!
{−2(y) 0 }
+
x^3
3!
{−3(y′) 0 }+
x^4
4!
{ 2 ×4(y) 0 }
+
x^5
5!
{ 3 ×5(y′) 0 }+
x^6
6!
{− 2 × 4 ×6(y) 0 }
+
x^7
7!
{− 3 × 5 ×7(y′) 0 }
+
x^8
8!
{ 2 × 4 × 6 ×8(y) 0 }
(v) Collecting similar terms together gives:
y=(y) 0
{
1 −
2 x^2
2!
+
2 × 4 x^4
4!
−
2 × 4 × 6 x^6
6!
+
2 × 4 × 6 × 8 x^8
8!
− ···
}
+(y′) 0
{
x−
3 x^3
3!
+
3 × 5 x^5
5!
−
3 × 5 × 7 x^7
7!
+ ···
}
i.e.y=(y) 0
{
1 −
x^2
1
+
x^4
1 × 3
−
x^6
3 × 5
+
x^8
3 × 5 × 7
− ···
}
+(y′) 0 ×
{
x
1
−
x^3
1 × 2
+
x^5
2 × 4
−
x^7
2 × 4 × 6
+···
}
The boundary conditions are that atx=0,y= 1
and
dy
dx
=2, i.e. (y) 0 =1 and (y′) 0 =2.
Hence, the power series solution of the differ-
ential equation:
d^2 y
dx^2
+x
dy
dx
+ 2 y=0 is:
y=
{
1 −
x^2
1
+
x^4
1 × 3
−
x^6
3 × 5
+
x^8
3 × 5 × 7
−···
}
+ 2
{
x
1
−
x^3
1 × 2
+
x^5
2 × 4
−
x^7
2 × 4 × 6
+···
}
Problem 6. Determine the power series solu-
tion of the differential equation:
d^2 y
dx^2
+
dy
dx
+xy=0 given the boundary con-
ditions that atx=0,y=0 and
dy
dx
=1, using
Leibniz–Maclaurin’s method.
Following the above procedure:
(i) The differential equation is rewritten as:
y′′+y′+xy=0 and from the Leibniz theorem
of equation (13), each term is differentiated n
times, which gives:
y(n+2)+y(n+1)+y(n)(x)+ny(n−1)(1)+ 0 = 0
i.e. y(n+2)+y(n+1)+xy(n)+ny(n−1)= 0
(15)
(ii) Atx=0, equation (15) becomes:
y(n+2)+y(n+1)+ny(n−1)= 0
from which, y(n+2)=−{y(n+1)+ny(n−1)}
This is therecurrence relationand applies for
n≥ 1
(iii) Substitutingn=1, 2, 3,...will produce a set of
relationships between the various coefficients.
For n=1, (y′′′) 0 =−{(y′′) 0 +(y) 0 }
n=2, (y(4)) 0 =−{(y′′′) 0 +2(y′) 0 }
n=3, (y(5)) 0 =−{(y(4)) 0 +3(y′′) 0 }
n=4, (y(6)) 0 =−{(y(5)) 0 +4(y′′′) 0 }
n=5, (y(7)) 0 =−{(y(6)) 0 +5(y(4)) 0 }
n=6, (y(8)) 0 =−{(y(7)) 0 +6(y(5)) 0 }
From the given boundary conditions, atx=0,
y=0, thus (y) 0 =0, and atx=0,
dy
dx
=1, thus
(y′) 0 = 1