POWER SERIES METHODS OF SOLVING ORDINARY DIFFERENTIAL EQUATIONS 497I
From the given differential equation,
y′′+y′+xy=0, and, atx=0,
(y′′) 0 +(y′) 0 +(0)y=0 from which,
(y′′) 0 =−(y′) 0 =− 1Thus, (y) 0 = 0 ,(y′) 0 = 1 ,(y′′) 0 =− 1 ,(y′′′) 0 =−{(y′′) 0 +(y) 0 }=−(− 1 +0)= 1(y(4)) 0 =−{(y′′′) 0 +2(y′) 0 }=−[1+2(1)]=− 3(y(5)) 0 =−{(y(4)) 0 +3(y′′) 0 }=−[− 3 +3(−1)]= 6(y(6)) 0 =−{(y(5)) 0 +4(y′′′) 0 }=−[6+4(1)]=− 10(y(7)) 0 =−{(y(6)) 0 +5(y(4)) 0 }=−[− 10 +5(−3)]= 25(y(8)) 0 =−{(y(7)) 0 +6(y(5)) 0 }=−[25+6(6)]=− 61(iv) Maclaurin’s theorem states:
y=(y) 0 +x(y′) 0 +x^2
2!(y′′) 0 +x^3
3!(y′′′) 0+x^4
4!(y(4)) 0 + ···and substituting the above values into
Maclaurin’s theorem gives:y= 0 +x(1)+x^2
2!{− 1 }+x^3
3!{ 1 }+x^4
4!{− 3 }+x^5
5!{ 6 }+x^6
6!{− 10 }+x^7
7!{ 25 }+x^8
8!{− 61 }+···(v) Simplifying, the power series solution ofthe differential equation:d^2 y
dx^2+dy
dx+xy=0is
given by:y=x−x^2
2!+x^3
3!−3 x^4
4!+6 x^5
5!−10 x^6
6!+25 x^7
7!−61 x^8
8!+···Now try the following exercise.Exercise 196 Further problems on power
series solutions by the Leibniz–Maclaurin
method- Determine the power series solution of the
differential equation:d^2 y
dx^2+ 2 xdy
dx+y= 0
using the Leibniz–Maclaurin method, giventhat atx=0,y=1 anddy
dx=2.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
y=(
1 −x^2
2!+5 x^4
4!−5 × 9 x^6
6!+5 × 9 × 13 x^8
8!−···)
+ 2(
x−3 x^3
3!+3 × 7 x^5
5!−3 × 7 × 11 x^7
7!+···)⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦- Show that the power series solution of the dif-
ferential equation:(x+ 1 )d^2 y
dx^2+(x−1)dy
dx−
2 y=0, using the Leibniz–Maclaurin method,
is given by:y= 1 +x^2 +exgiven the bound-ary conditions that atx=0,y=dy
dx=1.- Find the particular solution of the differen-
tial equation: (x^2 +1)d^2 y
dx^2+xdy
dx− 4 y= 0
using the Leibniz–Maclaurin method, given
the boundary conditions that atx=0,y= 1anddy
dx=1.
[y= 1 +x+ 2 x^2 +x^3
2−x^5
8+x^7
16+···]- Use the Leibniz–Maclaurin method to deter-
mine the power series solution for the differ-
ential equation:xd^2 y
dx^2+dy
dx+xy=1giventhat atx=0,y=1 anddy
dx=2.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
y={
1 −x^2
22+x^4
22 × 42−x^6
22 × 42 × 62+ ···}
+ 2{x−x^3
32+x^5
32 × 52−x^7
32 × 52 × 72+···}⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦