Higher Engineering Mathematics

(Greg DeLong) #1
POWER SERIES METHODS OF SOLVING ORDINARY DIFFERENTIAL EQUATIONS 497

I

From the given differential equation,
y′′+y′+xy=0, and, atx=0,
(y′′) 0 +(y′) 0 +(0)y=0 from which,
(y′′) 0 =−(y′) 0 =− 1

Thus, (y) 0 = 0 ,(y′) 0 = 1 ,(y′′) 0 =− 1 ,

(y′′′) 0 =−{(y′′) 0 +(y) 0 }=−(− 1 +0)= 1

(y(4)) 0 =−{(y′′′) 0 +2(y′) 0 }

=−[1+2(1)]=− 3

(y(5)) 0 =−{(y(4)) 0 +3(y′′) 0 }

=−[− 3 +3(−1)]= 6

(y(6)) 0 =−{(y(5)) 0 +4(y′′′) 0 }

=−[6+4(1)]=− 10

(y(7)) 0 =−{(y(6)) 0 +5(y(4)) 0 }

=−[− 10 +5(−3)]= 25

(y(8)) 0 =−{(y(7)) 0 +6(y(5)) 0 }

=−[25+6(6)]=− 61

(iv) Maclaurin’s theorem states:


y=(y) 0 +x(y′) 0 +

x^2
2!

(y′′) 0 +

x^3
3!

(y′′′) 0

+

x^4
4!

(y(4)) 0 + ···

and substituting the above values into
Maclaurin’s theorem gives:

y= 0 +x(1)+

x^2
2!

{− 1 }+

x^3
3!

{ 1 }+

x^4
4!

{− 3 }

+

x^5
5!

{ 6 }+

x^6
6!

{− 10 }+

x^7
7!

{ 25 }

+

x^8
8!

{− 61 }+···

(v) Simplifying, the power series solution of

the differential equation:

d^2 y
dx^2

+

dy
dx

+xy=0is
given by:

y=x−

x^2
2!

+

x^3
3!


3 x^4
4!

+

6 x^5
5!


10 x^6
6!

+

25 x^7
7!


61 x^8
8!

+···

Now try the following exercise.

Exercise 196 Further problems on power
series solutions by the Leibniz–Maclaurin
method


  1. Determine the power series solution of the


differential equation:

d^2 y
dx^2

+ 2 x

dy
dx

+y= 0
using the Leibniz–Maclaurin method, given

that atx=0,y=1 and

dy
dx

=2.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
y=

(
1 −

x^2
2!

+

5 x^4
4!


5 × 9 x^6
6!

+

5 × 9 × 13 x^8
8!

−···

)
+ 2

(
x−

3 x^3
3!

+

3 × 7 x^5
5!


3 × 7 × 11 x^7
7!

+···

)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦


  1. Show that the power series solution of the dif-


ferential equation:(x+ 1 )

d^2 y
dx^2

+(x−1)

dy
dx


2 y=0, using the Leibniz–Maclaurin method,
is given by:y= 1 +x^2 +exgiven the bound-

ary conditions that atx=0,y=

dy
dx

=1.


  1. Find the particular solution of the differen-


tial equation: (x^2 +1)

d^2 y
dx^2

+x

dy
dx

− 4 y= 0
using the Leibniz–Maclaurin method, given
the boundary conditions that atx=0,y= 1

and

dy
dx

=1.
[

y= 1 +x+ 2 x^2 +

x^3
2


x^5
8

+

x^7
16

+···

]


  1. Use the Leibniz–Maclaurin method to deter-
    mine the power series solution for the differ-


ential equation:x

d^2 y
dx^2

+

dy
dx

+xy=1given

that atx=0,y=1 and

dy
dx

=2.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
y=

{
1 −

x^2
22

+

x^4
22 × 42


x^6
22 × 42 × 62

+ ···

}
+ 2

{

x−

x^3
32

+

x^5
32 × 52


x^7
32 × 52 × 72

+···

}

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
Free download pdf