POWER SERIES METHODS OF SOLVING ORDINARY DIFFERENTIAL EQUATIONS 497
I
From the given differential equation,
y′′+y′+xy=0, and, atx=0,
(y′′) 0 +(y′) 0 +(0)y=0 from which,
(y′′) 0 =−(y′) 0 =− 1
Thus, (y) 0 = 0 ,(y′) 0 = 1 ,(y′′) 0 =− 1 ,
(y′′′) 0 =−{(y′′) 0 +(y) 0 }=−(− 1 +0)= 1
(y(4)) 0 =−{(y′′′) 0 +2(y′) 0 }
=−[1+2(1)]=− 3
(y(5)) 0 =−{(y(4)) 0 +3(y′′) 0 }
=−[− 3 +3(−1)]= 6
(y(6)) 0 =−{(y(5)) 0 +4(y′′′) 0 }
=−[6+4(1)]=− 10
(y(7)) 0 =−{(y(6)) 0 +5(y(4)) 0 }
=−[− 10 +5(−3)]= 25
(y(8)) 0 =−{(y(7)) 0 +6(y(5)) 0 }
=−[25+6(6)]=− 61
(iv) Maclaurin’s theorem states:
y=(y) 0 +x(y′) 0 +
x^2
2!
(y′′) 0 +
x^3
3!
(y′′′) 0
+
x^4
4!
(y(4)) 0 + ···
and substituting the above values into
Maclaurin’s theorem gives:
y= 0 +x(1)+
x^2
2!
{− 1 }+
x^3
3!
{ 1 }+
x^4
4!
{− 3 }
+
x^5
5!
{ 6 }+
x^6
6!
{− 10 }+
x^7
7!
{ 25 }
+
x^8
8!
{− 61 }+···
(v) Simplifying, the power series solution of
the differential equation:
d^2 y
dx^2
+
dy
dx
+xy=0is
given by:
y=x−
x^2
2!
+
x^3
3!
−
3 x^4
4!
+
6 x^5
5!
−
10 x^6
6!
+
25 x^7
7!
−
61 x^8
8!
+···
Now try the following exercise.
Exercise 196 Further problems on power
series solutions by the Leibniz–Maclaurin
method
- Determine the power series solution of the
differential equation:
d^2 y
dx^2
+ 2 x
dy
dx
+y= 0
using the Leibniz–Maclaurin method, given
that atx=0,y=1 and
dy
dx
=2.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
y=
(
1 −
x^2
2!
+
5 x^4
4!
−
5 × 9 x^6
6!
+
5 × 9 × 13 x^8
8!
−···
)
+ 2
(
x−
3 x^3
3!
+
3 × 7 x^5
5!
−
3 × 7 × 11 x^7
7!
+···
)
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
- Show that the power series solution of the dif-
ferential equation:(x+ 1 )
d^2 y
dx^2
+(x−1)
dy
dx
−
2 y=0, using the Leibniz–Maclaurin method,
is given by:y= 1 +x^2 +exgiven the bound-
ary conditions that atx=0,y=
dy
dx
=1.
- Find the particular solution of the differen-
tial equation: (x^2 +1)
d^2 y
dx^2
+x
dy
dx
− 4 y= 0
using the Leibniz–Maclaurin method, given
the boundary conditions that atx=0,y= 1
and
dy
dx
=1.
[
y= 1 +x+ 2 x^2 +
x^3
2
−
x^5
8
+
x^7
16
+···
]
- Use the Leibniz–Maclaurin method to deter-
mine the power series solution for the differ-
ential equation:x
d^2 y
dx^2
+
dy
dx
+xy=1given
that atx=0,y=1 and
dy
dx
=2.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
y=
{
1 −
x^2
22
+
x^4
22 × 42
−
x^6
22 × 42 × 62
+ ···
}
+ 2
{
x−
x^3
32
+
x^5
32 × 52
−
x^7
32 × 52 × 72
+···
}
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦