POWER SERIES METHODS OF SOLVING ORDINARY DIFFERENTIAL EQUATIONS 507
I
=
−a 2
23 (v+2)
=
− 1
23 (v+2)
− 1
2 v+^2 (v+2)
=
1
2 v+^4 (2!)(v+3)
since (v+2)(v+2)=(v+3)
and a 6 =
− 1
2 v+^6 (3!)(v+4)
and so on.
Therecurrence relationis:
ar=
(−1)r/^2
2 v+r
(r
2
!
)
(
v+
r
2
+ 1
)
And if we letr= 2 k, then
a 2 k=
(−1)k
2 v+^2 k(k!)(v+k+1)
(42)
fork=1, 2, 3,···
Hence, it is possible to write the new form for
equation (38) as:
y=Axv
{
1
2 v(v+1)
−
x^2
2 v+^2 (1!)(v+2)
+
x^4
2 v+^4 (2!)(v+3)
−···
}
This is calledthe Bessel function of the first order
kind, of orderv,and is denoted byJv(x),
i.e. Jv(x)=
(x
2
)v{ 1
(v+1)
−
x^2
22 ( 1 !)(v+2)
+
x^4
24 ( 2 !)(v+ 3 )
−···
}
providedvis not a negative integer.
For the second solution,whenc=−v, replacingv
by−vin equation (42) above gives:
a 2 k=
(−1)k
22 k−v(k!)(k−v+1)
from which, when k=0,a 0 =
(− 1 )^0
2 −v(0!)(1−v)
=
1
2 −v(1−v)
since 0!=1 (see page 492)
whenk=1,a 2 =
(−1)^1
22 −v( 1 !)(1−v+1)
=
− 1
22 −v(1!)(2−v)
whenk=2,a 4 =
(−1)^2
24 −v(2!)(2−v+1)
=
1
24 −v(2!)(3−v)
whenk=3,a 6 =
(−1)^3
26 −v( 3 !)(3−v+1)
=
1
26 −v(3!)(4−v)
and so on.
Hence,y=Bx−v
{
1
2 −v(1−v)
−
x^2
22 −v(1!)(2−v)
+
x^4
24 −v(2!)(3−v)
−···
}
i.e. J−v(x)=
(x
2
)−v{ 1
( 1 −v)
−
x^2
22 ( 1 !)( 2 −v)
+
x^4
24 ( 2 !)( 3 −v)
−···
}
providedvis not a positive integer.
Jv(x) andJ−v(x) are two independent solutions of
the Bessel equation; the complete solution is:
y=AJv(x)+BJ−v(x) whereAandBare constants
i.e. y=AJv(x)+BJ−v(x)
=A
(x
2
)v{ 1
(v+ 1 )
−
x^2
22 ( 1 !)(v+ 2 )
+
x^4
24 ( 2 !)(v+ 4 )
−···
}
+B
(x
2
)−v{ 1
( 1 −v)
−
x^2
22 ( 1 !)( 2 −v)
+
x^4
24 ( 2 !)( 3 −v)
−···
}
In general terms:Jv(x)=
(x
2
)v∑∞
k= 0
(−1)kx^2 k
22 k(k!)(v+k+1)
and J−v(x)=
(x
2
)−v∑∞
k= 0
(−1)kx^2 k
22 k(k!)(k−v+1)