POWER SERIES METHODS OF SOLVING ORDINARY DIFFERENTIAL EQUATIONS 511I
Rodrigue’s formula
An alternative method of determining Legendre
polynomials is by usingRodrigue’s formula, which
states:
Pn(x)=1
2 nn!dn(
x^2 − 1)ndxn(48)This is demonstrated in the following worked
problems.
Problem 15. Determine the Legendre polyno-
mialP 2 (x) using Rodrigue’s formula.In Rodrigue’s formula, Pn(x)=
1
2 nn!dn(
x^2 − 1)ndxn
and whenn=2,
P 2 (x)=
1
222!d^2 (x^2 −1)^2
dx^2=1
23d^2 (x^4 − 2 x^2 +1)
dx^2
d
dx(x^4 − 2 x^2 +1)= 4 x^3 − 4 xand
d^2(
x^4 − 2 x^2 + 1)dx^2=d(4x^3 − 4 x)
dx= 12 x^2 − 4Hence, P 2 (x)=
1
23d^2(
x^4 − 2 x^2 + 1)dx^2=1
8(
12 x^2 − 4)i.e. P 2 (x)=
1
2(
3 x^2 − 1)
the same as in Problem 13.Problem 16. Determine the Legendre polyno-
mialP 3 (x) using Rodrigue’s formula.In Rodrigue’s formula,Pn(x) =
1
2 nn!dn(
x^2 − 1)ndxn
and whenn=3,
P 3 (x)=
1
233!d^3(
x^2 − 1) 3dx^3=1
23 (6)d^3(
x^2 − 1)(
x^4 − 2 x^2 + 1)dx^3=1
(8)(6)d^3(
x^6 − 3 x^4 + 3 x^2 − 1)dx^3d(
x^6 − 3 x^4 + 3 x^2 − 1)dx= 6 x^5 − 12 x^3 + 6 xd(
6 x^5 − 12 x^3 + 6 x)dx= 30 x^4 − 36 x^2 + 6andd(
30 x^4 − 36 x^2 + 6)dx= 120 x^3 − 72 xHence,P 3 (x)=1
(8)(6)d^3(
x^6 − 3 x^4 + 3 x^2 − 1)dx^3=1
(8)(6)(
120 x^3 − 72 x)
=1
8(
20 x^3 − 12 x)i.e. P 3 (x)=1
2(
5 x^3 − 3 x)
the same as in Prob-
lem 14.Now try the following exercise.Exercise 199 Legendre’s equation and
Legendre polynomials- Determine the power series solution of
the Legendre equation:(
1 −x^2
)
y′′− 2 xy′+k(k+1)y= 0 when
(a)k=0 (b)k=2, up to and including the
term inx^5.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
(a)y=a 0 +a 1(x+x^3
3+x^5
5+···)(b)y=a 0{
1 − 3 x^2}+a 1{
x−2
3x^3 −1
5x^5}⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦- Find the following Legendre polynomials:
(a)P 1 (x) (b)P 4 (x) (c)P 5 (x)
⎡
⎢
⎣(a)x (b)1
8(
35 x^4 − 30 x^2 + 3)(c)1
8(
63 x^5 − 70 x^3 + 15 x)⎤⎥
⎦