524 DIFFERENTIAL EQUATIONSfrom which,X=Acospx+Bsinpxand Y=Cepy+De−py
or Y=Ccoshpy+Dsinhpy
or Y=Esinhp(y+φ)Hence u(x,y)=XY
={Acospx+Bsinpx}{Esinhp(y+φ)}
or u(x,y)
={Pcospx+Qsinpx}{sinhp(y+φ)}whereP=AEandQ=BE.The first boundary condition is:u(0,y)=0, hence
0 =Psinhp(y+φ) from which,P=0.
Hence,u(x,y)=Qsinpxsinhp(y+φ).
The second boundary condition is:u(1,y)=0, hence
0 =Qsinp(1) sinhp(y+φ) from which,
sinp=0, hence,p=nπ forn=1, 2, 3,...
The third boundary condition is:u(x,0)=0, hence,
0 =Qsinpxsinhp(φ) from which,
sinhp(φ)=0 andφ=0.
Hence,u(x,y)=Qsinpxsinhpy.
Since there are many solutions for integer values ofn,
u(x,y)=∑∞n= 1Qnsinpxsinhpy=∑∞n= 1Qnsinnπxsinhnπy (a)The fourth boundary condition is:u(x,1)= 4 =f(x),
hence,f(x)=∑∞n= 1Qnsinnπxsinhnπ(1).From Fourier series coefficients,Qnsinhnπ= 2 ×the mean value of
f(x) sinnπxfromx=0tox= 1i.e. =2
1∫ 104 sinnπxdx= 8[
−cosnπx
nπ] 10=−8
nπ(cosnπ−cos 0)=8
nπ( 1 −cosnπ)=0 (for even values ofn),=16
nπ(for odd values ofn)Hence, Qn=16
nπ(sinhnπ)=16
nπcosechnπHence, from equation (a),u(x,y)=∑∞n= 1Qnsinnπxsinhnπy=16
π∑∞n(odd)= 11
n(cosechnπsinnπxsinhnπy)Now try the following exercise.Exercise 204 Further problems on the
Laplace equation- A rectangular plate is bounded by the
linesx=0,y=0,x=1 andy= 3 .Apply the
Laplace equation∂^2 u
∂x^2+∂^2 u
∂y^2=0 to deter-mine the potential distributionu(x,y) over
the plate, subject to the following boundary
conditions:
u=0 whenx= 00 ≤y≤2,
u=0 whenx= 10 ≤y≤2,
u=0 wheny= 20 ≤x≤1,
u=5 wheny= 30 ≤x≤ 1
⎡
⎣u(x,y)=^20
π∑∞n(odd)= 11
ncosechnπsinnπxsinhnπ(y−2)⎤
⎦- A rectangular plate is bounded by the
linesx=0,y=0,x=3,y= 2 .Determine the
potential distribution u(x,y) over the rec-
tangle using the Laplace equation
∂^2 u
∂x^2
+∂^2 u
∂y^2=0, subject to the followingboundary conditions:
u(0,y)= 00 ≤y≤2,
u(3,y)= 00 ≤y≤2,
u(x,2)= 00 ≤x≤3,
u(x,0)=x(3−x)0≤x≤ 3
⎡
⎣u(x,y)=^216
π^3∑∞n(odd)= 11
n^3 cosech2 nπ
3 sinnπx
3 sinhnπ
3 (2−y)⎤
⎦