INVERSE LAPLACE TRANSFORMS 641K
simpler fractions which may be inverted on sight.
For example, the function,
F(s)=2 s− 3
s(s−3)cannot be inverted on sight from Table 66.1. How-
ever, by using partial fractions,
2 s− 3
s(s−3)
≡1
s+1
s− 3which may be inverted as1 +e^3 tfrom (i) and (iii) of Table 64.1.
Partial fractions are discussed in Chapter 3, and a
summary of the forms of partial fractions is given in
Table 3.1 on page 18.
Problem 7. DetermineL−^1{
4 s− 5
s^2 −s− 2}4 s− 5
s^2 −s− 2≡4 s− 5
(s−2)(s+1)≡A
(s−2)+B
(s+1)≡A(s+1)+B(s−2)
(s−2)(s+1)Hence 4s− 5 ≡A(s+1)+B(s−2).
Whens=2, 3= 3 A, from which,A=1.
Whens=−1,− 9 =− 3 B, from which,B=3.
HenceL−^1
{
4 s− 5
s^2 −s− 2}≡L−^1{
1
s− 2+3
s+ 1}=L−^1{
1
s− 2}
+L−^1{
3
s+ 1}=e^2 t+ 3 e−t, from (iii) of Table 66.1Problem 8. FindL−^1{
3 s^3 +s^2 + 12 s+ 2
(s−3)(s+1)^3}3 s^3 +s^2 + 12 s+ 2
(s−3)(s+1)^3≡A
s− 3+B
s+ 1+C
(s+1)^2+D
(s+1)^3≡(
A(s+1)^3 +B(s−3)(s+1)^2
+C(s−3)(s+1)+D(s−3))(s−3)(s+1)^3Hence3 s^3 +s^2 + 12 s+ 2 ≡A(s+1)^3 +B(s−3)(s+1)^2
+C(s−3)(s+1)+D(s−3)Whens=3, 128 = 64 A, from which,A=2.Whens=−1,− 12 =− 4 D, from which,D=3.Equatings^3 terms gives: 3=A+B, from which,
B=1.Equating constant terms gives:2 =A− 3 B− 3 C− 3 D,i.e. 2 = 2 − 3 − 3 C−9,from which, 3C=−12 andC=− 4HenceL−^1{
3 s^3 +s^2 + 12 s+ 2
(s−3)(s+1)^3}≡L−^1{
2
s− 3+1
s+ 1−4
(s+1)^2+3
(s+1)^3}=2e^3 t+e−t−4e−tt+3
2e−tt^2 ,from (iii) and (xi) of Table 66.1Problem 9. DetermineL−^1{
5 s^2 + 8 s− 1
(s+3)(s^2 +1)}5 s^2 + 8 s− 1
(s+3)(s^2 +1)≡A
s+ 3+Bs+C
(s^2 +1)≡A(s^2 +1)+(Bs+C)(s+3)
(s+3)(s^2 +1)Hence 5s^2 + 8 s− 1 ≡A(s^2 +1)+(Bs+C)(s+3).Whens=−3, 20= 10 A, from which,A=2.Equatings^2 terms gives: 5=A+B, from which,
B=3, sinceA=2.Equatingsterms gives: 8= 3 B+C, from which,
C=−1, sinceB=3.