660 FOURIER SERIES
−π −π/ 2 0 π/ 2 π−π
− 4π4f(x)P 1f(x)x−π −π/ 2 0 π/ 2 π xP 2P 1
f(x) f(x)
π−π4 /3 sin 3xf(x)
π−π/ 2
−π^0 π/^2 π x
4 /5 sin 5xP 2P 3f(x)(c)(b)(a)−πFigure 69.4
Problem 4. Determine the Fourier series forthe full wave rectified sine wave i=5 sinθ
2
shown in Fig. 69.5.i = 5 sin /2 θ
5− 2 π 0 2 π 4 π θiFigure 69.5i=5 sinθ
2is a periodic function of period 2π.
Thusi=f(θ)=a 0 +∑∞n= 1(ancosnθ+bnsinnθ)In this case it is better to take the range 0 to 2π
instead of−πto+πsince the waveform is continu-
ous between 0 and 2π.a 0 =1
2 π∫ 2 π0f(θ)dθ=1
2 π∫ 2 π05 sinθ
2dθ=5
2 π[
−2 cosθ
2] 2 π0=5
π[(
−cos2 π
2)
−(−cos 0)]=5
π[(1)−(−1)]=10
πan=1
π∫ 2 π05 sinθ
2cosnθdθ=5
π∫ 2 π01
2{
sin(
θ
2+nθ)+sin(
θ
2−nθ)}
dθ(see Chapter 40, page 400)=5
2 π[
−cos[
θ( 1
2 +n)]( 1
2 +n)−cos[
θ( 1
2 −n)]
( 1
2 −n)] 2 π0