HYPERBOLIC FUNCTIONS 49A
Let x=1,
then ch 1= 1 +
12
2 × 1+14
4 × 3 × 2 × 1+16
6 × 5 × 4 × 3 × 2 × 1+ ···= 1 + 0. 5 + 0. 04167 + 0. 001389 + ···i.e. ch 1= 1. 5431 , correct to 4 decimal places,
which may be checked by using a calculator.
Problem 16. Determine, correct to 3 deci-
mal places, the value of sh 3 using the series
expansion for shx.shx=x+x^3
3!+x^5
5!+···from aboveLetx=3, then
sh 3= 3 +33
3!+35
5!+37
7!+39
9!+311
11!+···= 3 + 4. 5 + 2. 025 + 0. 43393 + 0. 05424
+ 0. 00444 +···i.e. sh 3= 10. 018 , correct to 3 decimal places.
Problem 17. Determine the power series for2ch(
θ
2)
−sh 2θas far as the term inθ^5.In the series expansion for chx, letx=
θ
2then:2ch(
θ
2)
= 2[
1 +(θ/2)^2
2!+(θ/2)^4
4!+···]= 2 +θ^2
4+θ^4
192+···In the series expansion for shx, letx= 2 θ, then:
sh 2θ= 2 θ+(2θ)^3
3!+(2θ)^5
5!+···= 2 θ+4
3θ^3 +4
15θ^5 +···Hencech(
θ
2)
−sh 2θ=(
2 +θ^2
4+θ^4
192+···)−(
2 θ+4
3θ^3 +4
15θ^5 +···)= 2 − 2 θ+θ^2
4−4
3θ^3 +θ^4
192−4
15θ^5 +···as far theterm inθ^5Now try the following exercise.Exercise 27 Further problems on series
expansions for coshxand sinhx- Use the series expansion for chxto evalu-
ate, correct to 4 decimal places: (a) ch 1. 5
(b) ch 0. 8 [(a) 2.3524 (b) 1.3374] - Use the series expansion for shxto evaluate,
correct to 4 decimal places: (a) sh 0.5 (b) sh 2
[(a) 0.5211 (b) 3.6269]- Expand the following as a power series as far
as the term inx^5 : (a) sh 3x(b) ch 2x
⎡
⎢
⎣(a) 3x+9
2x^3 +81
40x^5(b) 1+ 2 x^2 +2
3x^4⎤⎥
⎦In Problems 4 and 5, prove the given identities,
the series being taken as far as the term inθ^5 only.- sh 2θ−shθ≡θ+
7
6θ^3 +31
120θ^5- 2 sh
θ
2−chθ
2≡− 1 +θ−θ^2
8+θ^3
24−θ^4
384+θ^5
1920