HYPERBOLIC FUNCTIONS 49
A
Let x=1,
then ch 1= 1 +
12
2 × 1
+
14
4 × 3 × 2 × 1
+
16
6 × 5 × 4 × 3 × 2 × 1
+ ···
= 1 + 0. 5 + 0. 04167 + 0. 001389 + ···
i.e. ch 1= 1. 5431 , correct to 4 decimal places,
which may be checked by using a calculator.
Problem 16. Determine, correct to 3 deci-
mal places, the value of sh 3 using the series
expansion for shx.
shx=x+
x^3
3!
+
x^5
5!
+···from above
Letx=3, then
sh 3= 3 +
33
3!
+
35
5!
+
37
7!
+
39
9!
+
311
11!
+···
= 3 + 4. 5 + 2. 025 + 0. 43393 + 0. 05424
+ 0. 00444 +···
i.e. sh 3= 10. 018 , correct to 3 decimal places.
Problem 17. Determine the power series for
2ch
(
θ
2
)
−sh 2θas far as the term inθ^5.
In the series expansion for chx, letx=
θ
2
then:
2ch
(
θ
2
)
= 2
[
1 +
(θ/2)^2
2!
+
(θ/2)^4
4!
+···
]
= 2 +
θ^2
4
+
θ^4
192
+···
In the series expansion for shx, letx= 2 θ, then:
sh 2θ= 2 θ+
(2θ)^3
3!
+
(2θ)^5
5!
+···
= 2 θ+
4
3
θ^3 +
4
15
θ^5 +···
Hence
ch
(
θ
2
)
−sh 2θ=
(
2 +
θ^2
4
+
θ^4
192
+···
)
−
(
2 θ+
4
3
θ^3 +
4
15
θ^5 +···
)
= 2 − 2 θ+
θ^2
4
−
4
3
θ^3 +
θ^4
192
−
4
15
θ^5 +···as far the
term inθ^5
Now try the following exercise.
Exercise 27 Further problems on series
expansions for coshxand sinhx
- Use the series expansion for chxto evalu-
ate, correct to 4 decimal places: (a) ch 1. 5
(b) ch 0. 8 [(a) 2.3524 (b) 1.3374] - Use the series expansion for shxto evaluate,
correct to 4 decimal places: (a) sh 0.5 (b) sh 2
[(a) 0.5211 (b) 3.6269]
- Expand the following as a power series as far
as the term inx^5 : (a) sh 3x(b) ch 2x
⎡
⎢
⎣
(a) 3x+
9
2
x^3 +
81
40
x^5
(b) 1+ 2 x^2 +
2
3
x^4
⎤
⎥
⎦
In Problems 4 and 5, prove the given identities,
the series being taken as far as the term inθ^5 only.
- sh 2θ−shθ≡θ+
7
6
θ^3 +
31
120
θ^5
- 2 sh
θ
2
−ch
θ
2
≡− 1 +θ−
θ^2
8
+
θ^3
24
−
θ^4
384
+
θ^5
1920