Higher Engineering Mathematics

(Greg DeLong) #1
664 FOURIER SERIES

=

2
π

[
xsinnx
n

+

cosnx
n^2


−π

=

2
π

[(
0 +

cosnπ
n^2

)

(
0 +

cosn(−π)
n^2

)]
= 0

bn=

1
π

∫π

−π

f(x) sinnxdx=

1
π

∫π

−π

2 xsinnxdx

=

2
π

[
−xcosnx
n


∫ (
−cosnx
n

)
dx


−π
by parts

=

2
π

[
−xcosnx
n

+

sinnx
n^2


−π

=

2
π

[(
−πcosnπ
n

+

sinnπ
n^2

)


(
−(−π) cosn(−π)
n

+

sinn(−π)
n^2

)]

=

2
π

[
−πcosnπ
n


πcos (−nπ)
n

]
=

− 4
n

cosnπ

When n is odd, bn=


4
n

. Thus b 1 =4, b 3 =


4
3

,

b 5 =

4
5

, and so on.

When n is even, bn=


− 4
n

. Thus b 2 =−


4
2

,

b 4 =−

4
4

,b 6 =−

4
6

, and so on.

Thus f(x)= 2 x=4 sinx−

4
2

sin 2x+

4
3

sin 3x


4
4

sin 4x+

4
5

sin 5x−

4
6

sin 6x+···

i.e. 2 x= 4

(
sinx−

1
2

sin 2x+

1
3

sin 3x−

1
4

sin 4x

+

1
5

sin 5x−

1
6

sin 6x+ ···

)
(1)

for values off(x) between−πandπ. For values
off(x) outside the range−πto+πthe sum of the
series is not equal tof(x).

Problem 2. In the Fourier series of Problem 1,
by lettingx=π/2, deduce a series forπ/4.

Whenx=π/2,f(x)=πfrom Fig. 70.2.


Thus, from the Fourier series of equation (1):

2


2

)
= 4

(
sin

π
2


1
2

sin

2 π
2

+

1
3

sin

3 π
2


1
4

sin

4 π
2

+

1
5

sin

5 π
2


1
6

sin

6 π
2

+···

)

π= 4

(
1 − 0 −

1
3

− 0 +

1
5

− 0 −

1
7

−···

)

i.e.

π
4

= 1 −

1
3

+

1
5


1
7

+···

Problem 3. Obtain a Fourier series for the
function defined by:

f(x)=

{
x, when 0<x<π
0, whenπ<x< 2 π.

The defined function is shown in Fig. 70.3 between
0 and 2π. The function is constructed outside of this
range so that it is periodic of period 2π, as shown by
the broken line in Fig. 70.3.

− 2 π−π 0 π 2 π 3 π

π

f(x) f(x) = x

x

Figure 70.3

For a Fourier series:

f(x)=a 0 +

∑∞

n= 1

(ancosnx+bnsinnx)

It is more convenient in this case to take the limits
from0to2πinstead of from−πto+π. The value
of the Fourier coefficients are unaltered by this
change of limits. Hence

a 0 =

1
2 π

∫ 2 π

0

f(x)dx=

1
2 π

[∫π

0

xdx+

∫ 2 π

π

0dx

]

=

1
2 π

[
x^2
2


0

=

1
2 π

(
π^2
2

)
=

π
4
Free download pdf