EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES 671L
The function is defined by:
f(x)={
−2, when−π<x< 02, when 0 <x<πFrom para. (b), bn=
2
π∫π0f(x) sinnxdx=2
π∫π02 sinnxdx=4
π[
−cosnx
n]π0=4
π[(
−cosnπ
n)
−(
−1
n)]=4
πn(1−cosnπ)Whennis even, bn=0.
Whennis odd, bn=
4
πn(1−(−1))=8
πnHence b 1 =
8
π,b 3 =8
3 π,b 5 =8
5 π,and so onHence the Fourier series is:
f(x)=8
π(
sinx+1
3sin 3x+1
5sin 5x+1
7sin 7x+···)Problem 4. Determine the Fourier series for
the functionf(θ)=θ^2 in the range−π<θ<π.
The function has a period of 2π.A graph off(θ)=θ^2 is shown in Fig. 71.3 in the range
−πtoπwith period 2π. The function is symmetrical
about thef(θ) axis and is thus an even function. Thus
a Fourier cosine series will result of the form:
f(θ)=a 0 +∑∞n= 1ancosnθFrom para. (a),
a 0 =
1
π∫π0f(θ)dθ=1
π∫π0θ^2 dθ=1
π[
θ^3
3]π0=π^2
3− 2 π −π (^02) π θ
π^2
f(θ)
π
f(θ) = θ^2
Figure 71.3
and an=
2
π
∫π
0
f(θ) cosnθdθ
2
π
∫π
0
θ^2 cosnθdθ
2
π
[
θ^2 sinnθ
n
2 θcosnθ
n^2
−
2 sinnθ
n^3
]π
0
by parts
2
π
[(
0 +
2 πcosnπ
n^2
− 0
)
−(0)
]
4
n^2
cosnπ
When n is odd, an=
− 4
n^2
. Hence a 1 =
− 4
12,a 3 =− 4
32,a 5 =− 4
52, and so on.Whennis even,an=4
n^2. Hencea 2 =
4
22,a 4 =4
42,
and so on.Hence the Fourier series is:f(θ)=θ^2 =π^2
3− 4(
cosθ−1
22cos 2θ+1
32cos 3θ−1
42cos 4 θ+1
52cos 5θ−···)Problem 5. For the Fourier series of Problem 4,letθ=πand show that∑∞n= 11
n^2=π^2
6Whenθ=π,f(θ)=π^2 (see Fig. 71.3). Hence from
the Fourier series:π^2 =π^2
3− 4(
cosπ−1
22cos 2π+1
32cos 3π−1
42cos 4π+1
52cos 5π−···)