EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES 675L
or f(x)=
8
π(
1
3sin 2x+2
( 3 )( 5 )sin 4x+3
( 5 )( 7 )sin 6x+···)Now try the following exercise.
Exercise 243 Further problems on half-
range Fourier series- Determine the half-range sine series for the
function defined by:
f(x)=⎧
⎨⎩x,0<x<π
2
0,π
2<x<π⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(x)=2
π(
sinx+π
4sin 2x−1
9sin 3x−π
8sin 4x+···)⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦- Obtain (a) the half-range cosine series and
(b) the half-range sine series for the function
f(t)=⎧
⎪⎨⎪⎩0, 0 <t<π
2
1,π
2<t<π⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
(a) f(t)=1
2−2
π(
cost−1
3cos 3t+1
5cos 5t−···)⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
(b) f(t)=2
π(
sint−sin 2t+1
3sin 3t+1
5sin 5t−1
3sin 6t+···)⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦- Find (a) the half-range Fourier sine series and
(b) the half-range Fourier cosine series for the
functionf(x)=sin^2 xin the range 0≤x≤π.
Sketch the function within and outside of the
given range.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
(a) f(x)=
8
π(
sinx
(1)(3)−sin 3x
(1)(3)(5)−sin 5x
(3)(5)(7)−sin 7x
(5)(7)(9)−···)(b) f(x)=1
2(1−cos 2x)⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦- Determine the half-range Fourier cosine
series in the rangex=0tox=π for the
function defined by:
f(x)=⎧
⎪⎪
⎨⎪⎪
⎩x,0<x<π
2(π−x),π
2<x<π⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(x)=π
4−2
π(
cos 2x+cos 6x
32+cos 10x
52+···)⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦