EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES 675
L
or f(x)=
8
π
(
1
3
sin 2x+
2
( 3 )( 5 )
sin 4x
+
3
( 5 )( 7 )
sin 6x+···
)
Now try the following exercise.
Exercise 243 Further problems on half-
range Fourier series
- Determine the half-range sine series for the
function defined by:
f(x)=
⎧
⎨
⎩
x,0<x<
π
2
0,
π
2
<x<π
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(x)=
2
π
(
sinx+
π
4
sin 2x
−
1
9
sin 3x
−
π
8
sin 4x+···
)
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
- Obtain (a) the half-range cosine series and
(b) the half-range sine series for the function
f(t)=
⎧
⎪⎨
⎪⎩
0, 0 <t<
π
2
1,
π
2
<t<π
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
(a) f(t)=
1
2
−
2
π
(
cost
−
1
3
cos 3t
+
1
5
cos 5t−···
)
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
(b) f(t)=
2
π
(
sint−sin 2t
+
1
3
sin 3t+
1
5
sin 5t
−
1
3
sin 6t+···
)
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
- Find (a) the half-range Fourier sine series and
(b) the half-range Fourier cosine series for the
functionf(x)=sin^2 xin the range 0≤x≤π.
Sketch the function within and outside of the
given range.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
(a) f(x)=
8
π
(
sinx
(1)(3)
−
sin 3x
(1)(3)(5)
−
sin 5x
(3)(5)(7)
−
sin 7x
(5)(7)(9)
−···
)
(b) f(x)=
1
2
(1−cos 2x)
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
- Determine the half-range Fourier cosine
series in the rangex=0tox=π for the
function defined by:
f(x)=
⎧
⎪⎪
⎨
⎪⎪
⎩
x,0<x<
π
2
(π−x),
π
2
<x<π
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(x)=
π
4
−
2
π
(
cos 2x
+
cos 6x
32
+
cos 10x
52
+···
)
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦