Higher Engineering Mathematics

(Greg DeLong) #1
EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES 675

L

or f(x)=


8
π

(
1
3

sin 2x+

2
( 3 )( 5 )

sin 4x

+

3
( 5 )( 7 )

sin 6x+···

)

Now try the following exercise.


Exercise 243 Further problems on half-
range Fourier series


  1. Determine the half-range sine series for the
    function defined by:


f(x)=




x,0<x<

π
2
0,

π
2

<x<π

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(x)=

2
π

(
sinx+

π
4

sin 2x


1
9

sin 3x


π
8

sin 4x+···

)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦


  1. Obtain (a) the half-range cosine series and
    (b) the half-range sine series for the function


f(t)=


⎪⎨

⎪⎩

0, 0 <t<

π
2
1,

π
2

<t<π

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
(a) f(t)=

1
2


2
π

(
cost


1
3

cos 3t

+

1
5

cos 5t−···

)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
(b) f(t)=

2
π

(
sint−sin 2t

+

1
3

sin 3t+

1
5

sin 5t


1
3

sin 6t+···

)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦


  1. Find (a) the half-range Fourier sine series and
    (b) the half-range Fourier cosine series for the
    functionf(x)=sin^2 xin the range 0≤x≤π.
    Sketch the function within and outside of the
    given range.
    ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
    (a) f(x)=


8
π

(
sinx
(1)(3)


sin 3x
(1)(3)(5)


sin 5x
(3)(5)(7)


sin 7x
(5)(7)(9)

−···

)

(b) f(x)=

1
2

(1−cos 2x)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦


  1. Determine the half-range Fourier cosine
    series in the rangex=0tox=π for the
    function defined by:


f(x)=


⎪⎪

⎪⎪

x,0<x<

π
2

(π−x),

π
2

<x<π

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(x)=

π
4


2
π

(
cos 2x

+

cos 6x
32

+

cos 10x
52

+···

)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
Free download pdf