684 FOURIER SERIESMean value=area
length of base≈1
2 π(
2 π
p)∑pk= 1yk≈1
p∑pk= 1ykHowever,a 0 = mean value off(x) in the range
0to2πThus a 0 ≈
1
p∑pk= 1yk (1)Similarly,an=twice the mean value off(x) cosnx
in the range 0 to 2π,thus an≈2
p∑pk= 1ykcosnxk (2)andbn=twice the mean value off(x) sinnxin the
range 0 to 2π,thus bn≈2
p∑pk= 1yksinnxk (3)Problem 1. The values of the voltagevvolts at
different moments in a cycle are given by:θ◦(degrees) V(volts)
30 62
60 35
90 − 38
120 − 64
150 − 63
180 − 52
210 − 28
240 24
270 80
300 96
330 90
360 70Draw the graph of voltageVagainst angleθand
analyse the voltage into its first three constituent
harmonics, each coefficient correct to 2 decimal
places.The graph of voltageVagainst angleθis shown in
Fig. 73.2. The range 0 to 2πis divided into 12 equal
intervals giving an interval width of2 π
12, i.e.π
6rad
or 30◦. The values of the ordinatesy 1 ,y 2 ,y 3 ,...are
62, 35,−38,...from the given table of values. If a
larger number of intervals are used, results havingy 1
y 2y 3 y 4 y 5 y 6y 7y 8y 9 y 11 y 12y 10270 360 degrees90 18080
60
40
200
− 20
− 40
− 60
− 80Voltage (volts)
θFigure 73.2a greater accuracy are achieved. The data is tabulated
in the proforma shown in Table 73.1, on page 685.From equation (1),a 0 ≈1
p∑pk= 1yk=1
12(212)= 17 .67 (sincep=12)From equation (2),an≈2
p∑pk= 1ykcosnxkhence a 1 ≈2
12(417.94)= 69. 66a 2 ≈2
12(−39)=− 6. 50and a 3 ≈2
12(−49)=− 8. 17From equation (3),bn≈2
p∑pk= 1yksinnxkhence b 1 ≈2
12(− 278 .53)=− 46. 42b 2 ≈2
12(29.43)= 4. 91and b 3 ≈2
12(55)= 9. 17Substituting these values into the Fourier series:f(x)=a 0 +∑∞n= 1(ancosnx+bnsinnx)gives: v= 17. 67 + 69 .66 cosθ− 6 .50 cos 2θ− 8 .17 cos 3θ+··· − 46 .42 sinθ+ 4 .91 sin 2θ+ 9 .17 sin 3θ+··· (4)