Ess-For-H8152.tex 19/7/2006 18: 2 Page 713
ESSENTIAL FORMULAE 713
∫π0xncosxdx=In=−nπn−^1 −n(n−1)In− 2
∫
xnsinxdx=In=−xncosx+nxn−^1 sinx−n(n−1)In− 2
∫
sinnxdx=In=−1
nsinn−^1 xcosx+n− 1
nIn− 2
∫
cosnxdx=In=1
ncosn−^1 sinx+n− 1
nIn− 2
∫π/ 20sinnxdx=∫π/ 20cosnxdx=In=n− 1
nIn− 2∫
tannxdx=In=tann−^1 x
n− 1−In− 2
∫
(lnx)ndx=In=x(lnx)n−nIn− 1With reference to Fig. FA4.0 x ax b xyy f(x)AFigure FA4Area under a curve:areaA=∫baydxMean value:mean value=1
b−a∫baydxR.m.s. value:r.m.s. value=√
√
√
√{
1
b−a∫bay^2 dx}Volume of solid of revolution:volume=∫baπy^2 dxabout thex-axisCentroidsWith reference to Fig. FA5:x ̄=∫baxydx
∫baydxand ̄y=1
2∫bay^2 dx
∫baydxArea Ay f(x)C
yx0 x ax bxyFigure FA5