Ess-For-H8152.tex 19/7/2006 18: 2 Page 713
ESSENTIAL FORMULAE 713
∫π
0
xncosxdx=In=−nπn−^1 −n(n−1)In− 2
∫
xnsinxdx=In=−xncosx+nxn−^1 sinx
−n(n−1)In− 2
∫
sinnxdx=In=−
1
n
sinn−^1 xcosx+
n− 1
n
In− 2
∫
cosnxdx=In=
1
n
cosn−^1 sinx+
n− 1
n
In− 2
∫π/ 2
0
sinnxdx=
∫π/ 2
0
cosnxdx=In=
n− 1
n
In− 2
∫
tannxdx=In=
tann−^1 x
n− 1
−In− 2
∫
(lnx)ndx=In=x(lnx)n−nIn− 1
With reference to Fig. FA4.
0 x ax b x
y
y f(x)
A
Figure FA4
Area under a curve:
areaA=
∫b
a
ydx
Mean value:
mean value=
1
b−a
∫b
a
ydx
R.m.s. value:
r.m.s. value=
√
√
√
√
{
1
b−a
∫b
a
y^2 dx
}
Volume of solid of revolution:
volume=
∫b
a
πy^2 dxabout thex-axis
Centroids
With reference to Fig. FA5:
x ̄=
∫b
a
xydx
∫b
a
ydx
and ̄y=
1
2
∫b
a
y^2 dx
∫b
a
ydx
Area A
y f(x)
C
y
x
0 x ax bx
y
Figure FA5