Chapter 7 • Portfolio theory and its relevance to real investment decisions
which equals:
×
Hence:
=E(ri) −E(rm)
If we set x to be the expression within the square root sign in equation (A7.2), then:
=×
and
σP=x1/2
= x−1/2
or
×
= 2 ασ^2 i+ 2 ασm^2 − 2 αm+2Cov(i,M) − 4 αCov(i,M)
so
If the market is in equilibrium, then M will already contain the appropriate pro-
portion of iand so the portfolio of iand M will contain no excess i. Thus the only point
on iMthat would be expected to occur will be M, that is, the point where α=0.
When α=0, dE(rP)/dσP(above) reduces to:
[E(ri) −E(rm)] × (A7.3)
At M, the chord iMis tangential to (has the same slope as) the capital market line
rfS. The slope of rfSis [E(rm) −rf]/σm. Equating this with (A7.3) above and simplifying
gives:
E(ri) =rf+[E(rm) −rf]Cov(i, M)
σ^2 m
σm
Cov(i, M) −σ^2 m
d
d
Cov
Cov Cov
Er Er Er iM
iM iM
P
P
im
im
imm
() [() ( )] [ ( ) ( ) ( , )]
σ (, ) (, )
ασ α σ α α
ασ ασ σ α
=− ×
+− + −
−−+ −
21 21
22 22 4
22 2 2
22
dx
dα
1
[ασ^22 im ( )+− 121 α σ2 2 ( )+α −αCov( , )]iM
1
2
1
2
dσP
dx
dσP
dx
dx
dα
dσP
dα
dE(rP)
dα
dα
dσP
dE(rP)
dα