BUSF_A01.qxd

(Darren Dugan) #1

Chapter 7 • Portfolio theory and its relevance to real investment decisions


which equals:

×


Hence:

=E(ri) −E(rm)

If we set x to be the expression within the square root sign in equation (A7.2), then:


and

σP=x1/2

= x−1/2

or

×


= 2 ασ^2 i+ 2 ασm^2 − 2 αm+2Cov(i,M) − 4 αCov(i,M)

so

If the market is in equilibrium, then M will already contain the appropriate pro-
portion of iand so the portfolio of iand M will contain no excess i. Thus the only point
on iMthat would be expected to occur will be M, that is, the point where α=0.
When α=0, dE(rP)/dσP(above) reduces to:

[E(ri) −E(rm)] × (A7.3)

At M, the chord iMis tangential to (has the same slope as) the capital market line
rfS. The slope of rfSis [E(rm) −rf]/σm. Equating this with (A7.3) above and simplifying
gives:

E(ri) =rf+[E(rm) −rf]Cov(i, M)
σ^2 m

σm
Cov(i, M) −σ^2 m

d
d

Cov
Cov Cov

Er Er Er iM
iM iM

P
P

im

im
imm

() [() ( )] [ ( ) ( ) ( , )]


σ (, ) (, )

ασ α σ α α
ασ ασ σ α

=− ×


+− + −


−−+ −


21 21


22 22 4


22 2 2
22

dx

1


[ασ^22 im ( )+− 121 α σ2 2 ( )+α −αCov( , )]iM

1


2


1


2


dσP
dx

dσP
dx

dx

dσP

dE(rP)


dσP

dE(rP)
Free download pdf