Signals and Systems - Electrical Engineering

(avery) #1

180 C H A P T E R 3: The Laplace Transform


FIGURE 3.6
Location of the poles and zeros of
cos( 2 t+θ)u(t)for (a)θ= 0 and for (b)
θ=π/ 4. Note that the zero is moved
to the right to 2 because the zero of
the Laplace transform is
s= 0 tan(θ)=2 tan(π/ 4 )= 2.

− 1 0 1 23

− 2

0

2


σ

0 5 10

− 1

−0.5

0

0.5

1

t

x^1

(t
)


− 2

0

2

− 1 0123
σ

− 1

−0.5

0

0.5

1

0 5 10
t

x^2

(t
)

(a)

(b)

%%%%%%%%%%%%%%%%%
% Example 3.4
%%%%%%%%%%%%%%%%%
syms t
x = exp (-t);
y = x * cos(10 * t);
X = laplace(x)
Y = laplace(y)
% plotting of signals and poles/zeros
figure(1)
subplot(221)
ezplot(x,[0,5]);grid
axis([0 5 0 1.1]);title(’x(t) = exp(-t)u(t)’)
numx = [0 1];denx = [1 1];
subplot(222)
splane(numx,denx)
subplot(223)
ezplot(y,[-1,5]);grid
axis([0 5 -1.1 1.1]);title(’y(t) = cos(10t)exp(-t)u(t)’)
numy = [0 1 1];deny = [1 2 101];
subplot(224)
splane(numy,deny)

The results are shown in Figure 3.7. n
Free download pdf