180 C H A P T E R 3: The Laplace Transform
FIGURE 3.6
Location of the poles and zeros of
cos( 2 t+θ)u(t)for (a)θ= 0 and for (b)
θ=π/ 4. Note that the zero is moved
to the right to 2 because the zero of
the Laplace transform is
s= 0 tan(θ)=2 tan(π/ 4 )= 2.
− 1 0 1 23
− 2
0
2
jΩ
σ
0 5 10
− 1
−0.5
0
0.5
1
t
x^1
(t
)
jΩ
− 2
0
2
− 1 0123
σ
− 1
−0.5
0
0.5
1
0 5 10
t
x^2
(t
)
(a)
(b)
%%%%%%%%%%%%%%%%%
% Example 3.4
%%%%%%%%%%%%%%%%%
syms t
x = exp (-t);
y = x * cos(10 * t);
X = laplace(x)
Y = laplace(y)
% plotting of signals and poles/zeros
figure(1)
subplot(221)
ezplot(x,[0,5]);grid
axis([0 5 0 1.1]);title(’x(t) = exp(-t)u(t)’)
numx = [0 1];denx = [1 1];
subplot(222)
splane(numx,denx)
subplot(223)
ezplot(y,[-1,5]);grid
axis([0 5 -1.1 1.1]);title(’y(t) = cos(10t)exp(-t)u(t)’)
numy = [0 1 1];deny = [1 2 101];
subplot(224)
splane(numy,deny)
The results are shown in Figure 3.7. n