3.5 Analysis of LTI Systems 225If we letx(t)=δ(t), the output isy(t)=h(t)or
h(t)=δ(t)+βh(t−τ)and ifH(s)=L[h(t)], then the Laplace transform of the above equation isH(s)= 1 +βH(s)e−sτor
solving forH(s):
H(s)=1
1 −βe−sτ=
1
1 −e−s=
∑∞
k= 0e−sk= 1 +e−s+e−^2 s+e−^3 s+···after replacing the given values forβandτ. The impulse responseh(t)is the inverse Laplace
transform ofH(s)or
h(t)=δ(t)+δ(t− 1 )+δ(t− 2 )+···=∑∞
k= 0δ(t−k)Ifx(t)is the input, the output is given by the convolution integral
y(t)=∫∞
−∞x(t−τ)h(τ)dτ=∫∞
−∞∑∞
k= 0δ(τ−k)x(t−τ)dτ=
∑∞
k= 0∫∞
−∞δ(τ−k)x(t−τ)dτ=∑∞
k= 0x(t−k)and replacingx(t)=u(t), we get
y(t)=∑∞
k= 0u(t−k)which tends to infinity astincreases.
For this system to be BIBO stable, the impulse responseh(t)must be absolutely integrable, which
is not the case for this system. Indeed,
∫∞−∞|h(t)|dt=∫∞
−∞∑∞
k= 0δ(t−k)dt=
∑∞
k= 0∫∞
−∞δ(t−k)dt=∑∞
k= 01 →∞
The poles ofH(s)are the roots of 1−e−s=0, which are the values ofssuch thate−sk= 1 =ej^2 πkor
sk=±j 2 πk. That is, there is an infinite number of poles on thejaxis, indicating that the system
is not BIBO stable. n