268 C H A P T E R 4: Frequency Analysis: The Fourier Series
FIGURE 4.12
Approximate Fourier seriesxN(t)of the pulse
trainx(t)(discontinuous) using the DC component
and 20 harmonics. The approximatexN(t)
displays the Gibb’s phenomenon around the
discontinuities.
0 0.2 0.4 0.6 0.8
− 1
−0.5
0
0.5
1
x(
t),
xN
(t
)
t(sec)
%%%%%%%%%%%%%%%%%
% Example 4.9---Simulation of Gibb’s phenomenon
%%%%%%%%%%%%%%%%
clf; clear all
w0 = 2∗pi; DC = 0; N = 20; % parameters of periodic signal
% computation of Fourier series coefficients
for k = 1:N,
X(k) = sin(k∗pi/2)/(k∗pi/2);
end
X = [DC X]; % Fourier series coefficients
% computation of periodic signal
Ts = 0.001; t = 0:Ts:1−Ts;
L = length(t); x = [ones(1, L/4) zeros(1, L/2) ones(1, L/4)]; x = x−0.5;
% computation of approximate
xN = X(1)∗ones(1,length(t));
for k = 2:N,
xN = xN + 2∗X(k)∗cos(2∗pi∗(k−1).∗t); % approximate signal
plot(t, xN); axis([0 max(t) 1.1∗min(xN) 1.1∗max(xN)])
hold on; plot(t, x, ’r’)
ylabel(’x(t), xN(t)’); xlabel(’t (sec)’);grid
hold off
pause(0.1)
end
When you execute the above script, it pauses to display the approximation for an increasing num-
ber of terms in the approximation. At each of these values ringing around the discontinuities the
Gibb’s phenomenon is displayed. n