282 C H A P T E R 4: Frequency Analysis: The Fourier Series
FIGURE 4.17
Even and odd components of the period ofy(t),
− 1 ≤t≤ 1.ty 1 e(t) y 1 o(t)− 1 1− 1− 1102t
11Thus, the mean value ofye(t)is the area undery 1 e(t)divided by 2 or 1.5, and fork6=0,Yek=1
T 0
Y 1 e(s)∣
∣s=jk 0 =^1
2[
1
s(es−e−s)+1
s^2(es− 2 +e−s)]
s=jkπ=sin(kπ)
πk+
1 −cos(kπ)
(kπ)^2= 0 +
1 −cos(kπ)
(kπ)^2=
1 −(− 1 )k
(kπ)^2The mean value ofyo(t)is zero, and fork6=0,Yok=1
T 0
Y 1 o(s)∣
∣s=jk 0 =^1
2[
es−e−s
s^2−
es+e−s
s]
s=jkπ=−jsin(kπ)
(kπ)^2+jcos(kπ)
kπ= 0 +jcos(kπ)
kπ=j(− 1 )k
kπFinally, the Fourier series coefficients ofy(t)areYk={
Ye 0 +Yo 0 =1.5+ 0 =1.5 k= 0
Yek+Yok=( 1 −(− 1 )k)/(kπ)^2 +j(− 1 )k/(kπ) k6= 0
n4.10.2 Linearity of Fourier Series—Addition of Periodic Signals
n Same fundamental frequency: Ifx(t)andy(t)are periodic signals with the same fundamental frequency
0 , then the Fourier series coefficients ofz(t)=αx(t)+βy(t)for constantsαandβareZk=αXk+βYk (4.44)whereXkandYkare the Fourier coefficients ofx(t)andy(t).
n Different fundamental frequencies: Ifx(t)is periodic of periodT 1 , andy(t)is periodic of periodT 2 such
thatT 2 /T 1 =N/M, for nondivisible integersNandM, thenz(t)=αx(t)+βy(t)is periodic of period