4.10 Other Properties of the Fourier Series 283
T 0 =MT 2 =NT 1 , and its Fourier coefficients are
Zk=αXk/N+βYk/M for integersksuch thatk/N,andk/Mare integers (4.45)
whereXkandYkare the Fourier coefficients ofx(t)andy(t).
Ifx(t)andy(t)are periodic signals of the same periodT 0 , the Fourier coefficients ofz(t)=αx(t)+
βy(t)(also periodic of periodT 0 ) are thenZk=αXk+βYkwhereXkandYkare the Fourier coefficients
ofx(t)andy(t), respectively.
In general, ifx(t)is periodic of periodT 1 , andy(t)is periodic of periodT 2 , their sumz(t)=αx(t)+
βy(t)is periodic if the ratioT 2 /T 1 is a rational number (i.e.,T 2 /T 1 =N/Mfor some nondivisible
integersNandM). If so, the period ofz(t)isT 0 =MT 2 =NT 1. The fundamental frequency ofz(t)
would be 0 = 1 /N= 2 /Mfor 1 the fundamental frequency ofx(t)and 2 the fundamental
frequency ofy(t). The Fourier series ofz(t)is then
z(t)=αx(t)+βy(t)=α
∑
k
Xkej^1 kt+β
∑
m
Ymej^2 mt
=α
∑
k
XkejN^0 kt+β
∑
m
YmejM^0 mt
=α
∑
n=0,±N,± 2 N,...
Xn/Nej^0 nt+β
∑
`=0,±M,± 2 M,...
Y`/Mej^0 `t
Thus, the coefficients are
Zk=αXk/N+βYk/M
for integersksuch thatk/Nandk/Mare integers.
nExample 4.15
Consider the sumz(t)of a periodic signalx(t)of periodT 1 =2, with a periodic signaly(t)with
periodT 2 =0.2. Find the Fourier coefficientsZkofz(t)in terms of the Fourier coefficientsXkand
Ykofx(t)andy(t).
Solution
The ratioT 2 /T 1 = 1 / 10 =N/Mis rational, soz(t)is periodic of periodT 0 =T 1 = 10 T 2 =2.
The fundamental frequency ofz(t)is 0 = 1 =π, and 2 = 10 0 = 10 πis the fundamental
frequency ofy(t). Thus, the Fourier coefficients ofz(t)are
Zk=
{
Xk+Yk/ 10 when k=0,±10,±20,...
Xk otherwise
n