436 CHAPTER 7: Sampling Theory
0 2 4 6
0
1
2
3
4
x(
t),
y(
t)
− 10 − 5 0 5
0
0.5
1
1.5
2
f (KHz)
−0.4−0.2 0 0.2
0
0.5
1
1.5
2
f (KHz)
0
0.010.020.030.040.05
0
1
2
3
4
t (sec)
t (sec) ×^10 −^3
|Y
(Ω
)|
|X
(Ω
)|
xr
(t
)
(a) (b)
0 2 4 6
0
1
2
3
4
t (sec)
x(
t),
y(
t)
Analog signal
Sampled signal
Analog signal
Sampled signal
− 10 − 5 0 5
0
0.5
1
1.5
2
f (KHz)
− 3 − 2 − 1 0 1 2
0
0.5
1
1.5
2
f (KHz)
0 2 4 6
0
1
2
3
4
t (sec)
|Y
(Ω
)|
× 10 −^3
× 10 −^3
|X
(Ω
)|
xr
(t
)
FIGURE 7.9
Sampling ofx(t)= 2 −cos( 500 πt)−sin( 1000 πt)with (a) no aliasing (fs= 6000 samples/sec) and (b) with
aliasing (fs= 800 samples/sec).
y1(1:delta:L) = x(1:delta:L);
y = x(1:delta:L);
% analog FT and DTFT of signals
dtx = 1/fsim;
X = fftshift(abs(fft(x)))∗dtx;
N = length(X); k = 0:(N−1); fx = 1/N.*k; fx = fx∗fsim/1000−fsim/2000;
dty = 1/fs;
Y = fftshift(abs(fft(y)))∗dty;
N = length(Y); k = 0:(N−1); fy = 1/N.*k; fy = fy∗fs/1000−fs/2000;
The following function computes the sinc interpolation of the samples.
function [t,xx,xr] = sincinterp(x,Ts)
%
% Sinc interpolation
% x sampled signal
% Ts sampling period of x
% xx,xr original samples and reconstructed in range t
%
N = length(x)
t = 0:dT:N;
xr = zeros(1,N∗ 100 +1);
for k = 1:N,