530 C H A P T E R 9: The Z-Transform
x[k]
h[− 1 −k]
h[2−k]
h[5−k]
x[k]
x[k]
045123
k
k
k
− 3 − 2 − 1
− 3 − 2 − 1
− 3 − 2 − 1
0
0
1
12
23
3
4
4
5
5
n=− 1
n= 2
n= 5
y[−1]= 0
y[2]=x[0]h[2]+x[1]h[1]+x[2]h[0]
y[5]=x[3]h[2]
(a)
(b)
(c)
FIGURE 9.4
Graphical approach: convolution sum for (a)n=− 1 , (b)n= 2 , and (c)n= 5 with corresponding outputsy[−1],
y[2], andy[5]. Bothx[k]andh[n−k]are plotted as functions ofkfor a given value ofn. The signalx[k]remains
stationary, whileh[n−k]moves linearly from left to right. Thus, the convolution sum is also called a linear
convolution.
ish[−k] shifted to the right one sample. Multiplyingx[k] byh[1−k] gives two values different
from zero, which when added givesy[1]=1, and so on. For increasing values ofnwe shift to
the right one sample to geth[n−k], multiply it byx[k], and then add the nonzero values to
obtain the outputy[n]. Figure 9.4 displays the graphical computation of the convolution sum
forn=−1,n=2 andn=5.
Convolution sum property:We have
X(z)= 1 +z−^1 +z−^2 +z−^3
H(z)=
1
2
[
1 +z−^1 +z−^2