9.4 One-Sided Z-Transform 541
Table 9.1 One-Sided Z-Transforms
Function of Time Function ofz, ROC
- δ[n] 1, wholez-plane
- u[n]
1
1 −z−^1
, |z|> 1 - nu[n]
z−^1
( 1 −z−^1 )^2
, |z|> 1 - n^2 u[n]
z−^1 ( 1 +z−^1 )
( 1 −z−^1 )^3
, |z|> 1 - αnu[n],|α|< 1
1
1 −αz−^1
, |z|>|α| - nαnu[n],|α|< 1
αz−^1
( 1 −αz−^1 )^2
, |z|>|α| - cos(ω 0 n)u[n]^1 −cos(ω^0 )z
− 1
1 −2 cos(ω 0 )z−^1 +z−^2
, |z|> 1
- sin(ω 0 n)u[n]
sin(ω 0 )z−^1
1 −2 cos(ω 0 )z−^1 +z−^2
, |z|> 1 - αncos(ω 0 n)u[n],|α|< 1
1 −αcos(ω 0 )z−^1
1 − 2 αcos(ω 0 )z−^1 +z−^2
, |z|> 1 - αnsin(ω 0 n)u[n],|α|< 1
αsin(ω 0 )z−^1
1 − 2 αcos(ω 0 )z−^1 +z−^2
, |z|>|α|
Table 9.2Basic Properties of One-Sided Z-Transform
Causal signals and constants αx[n],βy[n] αX(z),βY(z)
Linearity αx[n]+βy[n] αX(z)+βY(z)
Convolution sum (x∗y)[n]=
∑
kx[n]y[n−k] X(z)Y(z)
Time shifting—causal x[n−N]Ninteger z−NX(z)
Time shifting—noncausal x[n−N] z−NX(z)+x[−1]z−N+^1
x[n]noncausal,Ninteger +x[−2]z−N+^2 +···+x[−N]
Time reversal x[−n] X(z−^1 )
Multiplication byn n x[n] −z
dX(z)
dz
Multiplication byn^2 n^2 x[n] z^2
d^2 X(z)
dz^2
+z
dX(z)
dz
Finite difference x[n]−x[n−1] ( 1 −z−^1 )X(z)−x[−1]
Accumulation
∑n
k= 0 x[k]
X(z)
1 −z−^1
Initial value x[0] zlim→∞X(z)
Final value nlim→∞x[n] lim
z→ 1
(z− 1 )X(z)