9.5 One-Sided Z-Transform Inverse 551
− 1 −0.5 0
(a) (b)
0.5 1
− 2
−1.5
− 1
−0.5
0
0.5
1
1.5
2
22
Real part
Imaginary part
0 2 4 6 8 10
−0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
n
x[
n]
FIGURE 9.10
(a) Poles and zeros ofX(z)and (b) inverse Z-transformx[n].
Ifx[n]has a one-sided Z-transformX(z), thenx[n−N]has the following one-sided Z-transform:
Z[x[n−N]]=z−NX(z)+x[−1]z−N+^1 +x[−2]z−N+^2 +···+x[−N] (9.35)
Indeed, we have that
Z(x[n−N])=
∑∞
n= 0
x[n−N]z−n=
∑∞
m=−N
x[m]z−(m+N)
=z−N
∑∞
m= 0
x[m]z−m+
∑−^1
m=−N
x[m]z−(m+N)
=z−NX(z)+x[−1]z−N+^1 +x[−2]z−N+^2 +···+x[−N]
where we first letm=n−Nand then separated the sum into two, one corresponding to the
Z-transform ofx[n] multiplied byz−N(the delay on the signal) and a second sum that corresponds
to initial values{x[i],−N≤i≤− 1 }.